MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdw Structured version   Unicode version

Theorem vdw 13362
Description: Van der Waerden's theorem. For any finite coloring 
R and integer  K, there is an  N such that every coloring function from  1 ... N to  R contains a monochromatic arithmetic progression (which written out in full means that there is a color  c and base, increment values  a ,  d such that all the numbers  a ,  a  +  d ,  ... ,  a  +  ( k  -  1 ) d lie in the preimage of  {
c }, i.e. they are all in  1 ... N and  f evaluated at each one yields  c). (Contributed by Mario Carneiro, 13-Sep-2014.)
Assertion
Ref Expression
vdw  |-  ( ( R  e.  Fin  /\  K  e.  NN0 )  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) E. c  e.  R  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( K  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' f " {
c } ) )
Distinct variable groups:    a, c,
d, f, m, n, K    R, a, c, d, f, n
Allowed substitution hint:    R( m)

Proof of Theorem vdw
StepHypRef Expression
1 simpl 444 . . 3  |-  ( ( R  e.  Fin  /\  K  e.  NN0 )  ->  R  e.  Fin )
2 simpr 448 . . 3  |-  ( ( R  e.  Fin  /\  K  e.  NN0 )  ->  K  e.  NN0 )
31, 2vdwlem13 13361 . 2  |-  ( ( R  e.  Fin  /\  K  e.  NN0 )  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) K MonoAP 
f )
4 ovex 6106 . . . . 5  |-  ( 1 ... n )  e. 
_V
5 simpllr 736 . . . . 5  |-  ( ( ( ( R  e. 
Fin  /\  K  e.  NN0 )  /\  n  e.  NN )  /\  f  e.  ( R  ^m  (
1 ... n ) ) )  ->  K  e.  NN0 )
6 simpll 731 . . . . . . 7  |-  ( ( ( R  e.  Fin  /\  K  e.  NN0 )  /\  n  e.  NN )  ->  R  e.  Fin )
7 elmapg 7031 . . . . . . 7  |-  ( ( R  e.  Fin  /\  ( 1 ... n
)  e.  _V )  ->  ( f  e.  ( R  ^m  ( 1 ... n ) )  <-> 
f : ( 1 ... n ) --> R ) )
86, 4, 7sylancl 644 . . . . . 6  |-  ( ( ( R  e.  Fin  /\  K  e.  NN0 )  /\  n  e.  NN )  ->  ( f  e.  ( R  ^m  (
1 ... n ) )  <-> 
f : ( 1 ... n ) --> R ) )
98biimpa 471 . . . . 5  |-  ( ( ( ( R  e. 
Fin  /\  K  e.  NN0 )  /\  n  e.  NN )  /\  f  e.  ( R  ^m  (
1 ... n ) ) )  ->  f :
( 1 ... n
) --> R )
10 simplr 732 . . . . . . 7  |-  ( ( ( ( R  e. 
Fin  /\  K  e.  NN0 )  /\  n  e.  NN )  /\  f  e.  ( R  ^m  (
1 ... n ) ) )  ->  n  e.  NN )
11 nnuz 10521 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
1210, 11syl6eleq 2526 . . . . . 6  |-  ( ( ( ( R  e. 
Fin  /\  K  e.  NN0 )  /\  n  e.  NN )  /\  f  e.  ( R  ^m  (
1 ... n ) ) )  ->  n  e.  ( ZZ>= `  1 )
)
13 eluzfz1 11064 . . . . . 6  |-  ( n  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... n
) )
1412, 13syl 16 . . . . 5  |-  ( ( ( ( R  e. 
Fin  /\  K  e.  NN0 )  /\  n  e.  NN )  /\  f  e.  ( R  ^m  (
1 ... n ) ) )  ->  1  e.  ( 1 ... n
) )
154, 5, 9, 14vdwmc2 13347 . . . 4  |-  ( ( ( ( R  e. 
Fin  /\  K  e.  NN0 )  /\  n  e.  NN )  /\  f  e.  ( R  ^m  (
1 ... n ) ) )  ->  ( K MonoAP  f  <->  E. c  e.  R  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( K  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' f
" { c } ) ) )
1615ralbidva 2721 . . 3  |-  ( ( ( R  e.  Fin  /\  K  e.  NN0 )  /\  n  e.  NN )  ->  ( A. f  e.  ( R  ^m  (
1 ... n ) ) K MonoAP  f  <->  A. f  e.  ( R  ^m  (
1 ... n ) ) E. c  e.  R  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( K  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' f
" { c } ) ) )
1716rexbidva 2722 . 2  |-  ( ( R  e.  Fin  /\  K  e.  NN0 )  -> 
( E. n  e.  NN  A. f  e.  ( R  ^m  (
1 ... n ) ) K MonoAP  f  <->  E. n  e.  NN  A. f  e.  ( R  ^m  (
1 ... n ) ) E. c  e.  R  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( K  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' f
" { c } ) ) )
183, 17mpbid 202 1  |-  ( ( R  e.  Fin  /\  K  e.  NN0 )  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) E. c  e.  R  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( K  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' f " {
c } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    e. wcel 1725   A.wral 2705   E.wrex 2706   _Vcvv 2956   {csn 3814   class class class wbr 4212   `'ccnv 4877   "cima 4881   -->wf 5450   ` cfv 5454  (class class class)co 6081    ^m cmap 7018   Fincfn 7109   0cc0 8990   1c1 8991    + caddc 8993    x. cmul 8995    - cmin 9291   NNcn 10000   NN0cn0 10221   ZZ>=cuz 10488   ...cfz 11043   MonoAP cvdwm 13334
This theorem is referenced by:  vdwnnlem1  13363
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-map 7020  df-pm 7021  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-card 7826  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-2 10058  df-n0 10222  df-z 10283  df-uz 10489  df-rp 10613  df-fz 11044  df-hash 11619  df-vdwap 13336  df-vdwmc 13337  df-vdwpc 13338
  Copyright terms: Public domain W3C validator