MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdw Unicode version

Theorem vdw 13041
Description: Van der Waerden's theorem. For any finite coloring 
R and integer  K, there is an  N such that every coloring function from  1 ... N to  R contains a monochromatic arithmetic progression (which written out in full means that there is a color  c and base, increment values  a ,  d such that all the numbers  a ,  a  +  d ,  ... ,  a  +  ( k  -  1 ) d lie in the preimage of  {
c }, i.e. they are all in  1 ... N and  f evaluated at each one yields  c). (Contributed by Mario Carneiro, 13-Sep-2014.)
Assertion
Ref Expression
vdw  |-  ( ( R  e.  Fin  /\  K  e.  NN0 )  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) E. c  e.  R  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( K  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' f " {
c } ) )
Distinct variable groups:    a, c,
d, f, m, n, K    R, a, c, d, f, n
Allowed substitution hint:    R( m)

Proof of Theorem vdw
StepHypRef Expression
1 simpl 443 . . 3  |-  ( ( R  e.  Fin  /\  K  e.  NN0 )  ->  R  e.  Fin )
2 simpr 447 . . 3  |-  ( ( R  e.  Fin  /\  K  e.  NN0 )  ->  K  e.  NN0 )
31, 2vdwlem13 13040 . 2  |-  ( ( R  e.  Fin  /\  K  e.  NN0 )  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) K MonoAP 
f )
4 ovex 5883 . . . . 5  |-  ( 1 ... n )  e. 
_V
5 simpllr 735 . . . . 5  |-  ( ( ( ( R  e. 
Fin  /\  K  e.  NN0 )  /\  n  e.  NN )  /\  f  e.  ( R  ^m  (
1 ... n ) ) )  ->  K  e.  NN0 )
6 simpll 730 . . . . . . 7  |-  ( ( ( R  e.  Fin  /\  K  e.  NN0 )  /\  n  e.  NN )  ->  R  e.  Fin )
7 elmapg 6785 . . . . . . 7  |-  ( ( R  e.  Fin  /\  ( 1 ... n
)  e.  _V )  ->  ( f  e.  ( R  ^m  ( 1 ... n ) )  <-> 
f : ( 1 ... n ) --> R ) )
86, 4, 7sylancl 643 . . . . . 6  |-  ( ( ( R  e.  Fin  /\  K  e.  NN0 )  /\  n  e.  NN )  ->  ( f  e.  ( R  ^m  (
1 ... n ) )  <-> 
f : ( 1 ... n ) --> R ) )
98biimpa 470 . . . . 5  |-  ( ( ( ( R  e. 
Fin  /\  K  e.  NN0 )  /\  n  e.  NN )  /\  f  e.  ( R  ^m  (
1 ... n ) ) )  ->  f :
( 1 ... n
) --> R )
10 simplr 731 . . . . . . 7  |-  ( ( ( ( R  e. 
Fin  /\  K  e.  NN0 )  /\  n  e.  NN )  /\  f  e.  ( R  ^m  (
1 ... n ) ) )  ->  n  e.  NN )
11 nnuz 10263 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
1210, 11syl6eleq 2373 . . . . . 6  |-  ( ( ( ( R  e. 
Fin  /\  K  e.  NN0 )  /\  n  e.  NN )  /\  f  e.  ( R  ^m  (
1 ... n ) ) )  ->  n  e.  ( ZZ>= `  1 )
)
13 eluzfz1 10803 . . . . . 6  |-  ( n  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... n
) )
1412, 13syl 15 . . . . 5  |-  ( ( ( ( R  e. 
Fin  /\  K  e.  NN0 )  /\  n  e.  NN )  /\  f  e.  ( R  ^m  (
1 ... n ) ) )  ->  1  e.  ( 1 ... n
) )
154, 5, 9, 14vdwmc2 13026 . . . 4  |-  ( ( ( ( R  e. 
Fin  /\  K  e.  NN0 )  /\  n  e.  NN )  /\  f  e.  ( R  ^m  (
1 ... n ) ) )  ->  ( K MonoAP  f  <->  E. c  e.  R  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( K  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' f
" { c } ) ) )
1615ralbidva 2559 . . 3  |-  ( ( ( R  e.  Fin  /\  K  e.  NN0 )  /\  n  e.  NN )  ->  ( A. f  e.  ( R  ^m  (
1 ... n ) ) K MonoAP  f  <->  A. f  e.  ( R  ^m  (
1 ... n ) ) E. c  e.  R  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( K  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' f
" { c } ) ) )
1716rexbidva 2560 . 2  |-  ( ( R  e.  Fin  /\  K  e.  NN0 )  -> 
( E. n  e.  NN  A. f  e.  ( R  ^m  (
1 ... n ) ) K MonoAP  f  <->  E. n  e.  NN  A. f  e.  ( R  ^m  (
1 ... n ) ) E. c  e.  R  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( K  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' f
" { c } ) ) )
183, 17mpbid 201 1  |-  ( ( R  e.  Fin  /\  K  e.  NN0 )  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) E. c  e.  R  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( K  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' f " {
c } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1684   A.wral 2543   E.wrex 2544   _Vcvv 2788   {csn 3640   class class class wbr 4023   `'ccnv 4688   "cima 4692   -->wf 5251   ` cfv 5255  (class class class)co 5858    ^m cmap 6772   Fincfn 6863   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    - cmin 9037   NNcn 9746   NN0cn0 9965   ZZ>=cuz 10230   ...cfz 10782   MonoAP cvdwm 13013
This theorem is referenced by:  vdwnnlem1  13042
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-hash 11338  df-vdwap 13015  df-vdwmc 13016  df-vdwpc 13017
  Copyright terms: Public domain W3C validator