MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwnn Unicode version

Theorem vdwnn 13294
Description: Van der Waerden's theorem, infinitary version. For any finite coloring  F of the natural numbers, there is a color  c that contains arbitrarily long arithmetic progressions. (Contributed by Mario Carneiro, 13-Sep-2014.)
Assertion
Ref Expression
vdwnn  |-  ( ( R  e.  Fin  /\  F : NN --> R )  ->  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )
Distinct variable groups:    a, c,
d, k, m, F    R, c
Allowed substitution hints:    R( k, m, a, d)

Proof of Theorem vdwnn
Dummy variables  u  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 731 . . 3  |-  ( ( ( R  e.  Fin  /\  F : NN --> R )  /\  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )  ->  R  e.  Fin )
2 simplr 732 . . 3  |-  ( ( ( R  e.  Fin  /\  F : NN --> R )  /\  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )  ->  F : NN --> R )
3 oveq1 6028 . . . . . . . . . . 11  |-  ( m  =  w  ->  (
m  x.  d )  =  ( w  x.  d ) )
43oveq2d 6037 . . . . . . . . . 10  |-  ( m  =  w  ->  (
a  +  ( m  x.  d ) )  =  ( a  +  ( w  x.  d
) ) )
54eleq1d 2454 . . . . . . . . 9  |-  ( m  =  w  ->  (
( a  +  ( m  x.  d ) )  e.  ( `' F " { u } )  <->  ( a  +  ( w  x.  d ) )  e.  ( `' F " { u } ) ) )
65cbvralv 2876 . . . . . . . 8  |-  ( A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } )  <->  A. w  e.  (
0 ... ( k  - 
1 ) ) ( a  +  ( w  x.  d ) )  e.  ( `' F " { u } ) )
7 oveq1 6028 . . . . . . . . . 10  |-  ( a  =  y  ->  (
a  +  ( w  x.  d ) )  =  ( y  +  ( w  x.  d
) ) )
87eleq1d 2454 . . . . . . . . 9  |-  ( a  =  y  ->  (
( a  +  ( w  x.  d ) )  e.  ( `' F " { u } )  <->  ( y  +  ( w  x.  d ) )  e.  ( `' F " { u } ) ) )
98ralbidv 2670 . . . . . . . 8  |-  ( a  =  y  ->  ( A. w  e.  (
0 ... ( k  - 
1 ) ) ( a  +  ( w  x.  d ) )  e.  ( `' F " { u } )  <->  A. w  e.  (
0 ... ( k  - 
1 ) ) ( y  +  ( w  x.  d ) )  e.  ( `' F " { u } ) ) )
106, 9syl5bb 249 . . . . . . 7  |-  ( a  =  y  ->  ( A. m  e.  (
0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } )  <->  A. w  e.  (
0 ... ( k  - 
1 ) ) ( y  +  ( w  x.  d ) )  e.  ( `' F " { u } ) ) )
11 oveq2 6029 . . . . . . . . . 10  |-  ( d  =  z  ->  (
w  x.  d )  =  ( w  x.  z ) )
1211oveq2d 6037 . . . . . . . . 9  |-  ( d  =  z  ->  (
y  +  ( w  x.  d ) )  =  ( y  +  ( w  x.  z
) ) )
1312eleq1d 2454 . . . . . . . 8  |-  ( d  =  z  ->  (
( y  +  ( w  x.  d ) )  e.  ( `' F " { u } )  <->  ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } ) ) )
1413ralbidv 2670 . . . . . . 7  |-  ( d  =  z  ->  ( A. w  e.  (
0 ... ( k  - 
1 ) ) ( y  +  ( w  x.  d ) )  e.  ( `' F " { u } )  <->  A. w  e.  (
0 ... ( k  - 
1 ) ) ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } ) ) )
1510, 14cbvrex2v 2885 . . . . . 6  |-  ( E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } )  <->  E. y  e.  NN  E. z  e.  NN  A. w  e.  ( 0 ... (
k  -  1 ) ) ( y  +  ( w  x.  z
) )  e.  ( `' F " { u } ) )
16 oveq1 6028 . . . . . . . . 9  |-  ( k  =  x  ->  (
k  -  1 )  =  ( x  - 
1 ) )
1716oveq2d 6037 . . . . . . . 8  |-  ( k  =  x  ->  (
0 ... ( k  - 
1 ) )  =  ( 0 ... (
x  -  1 ) ) )
1817raleqdv 2854 . . . . . . 7  |-  ( k  =  x  ->  ( A. w  e.  (
0 ... ( k  - 
1 ) ) ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } )  <->  A. w  e.  (
0 ... ( x  - 
1 ) ) ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } ) ) )
19182rexbidv 2693 . . . . . 6  |-  ( k  =  x  ->  ( E. y  e.  NN  E. z  e.  NN  A. w  e.  ( 0 ... ( k  - 
1 ) ) ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } )  <->  E. y  e.  NN  E. z  e.  NN  A. w  e.  ( 0 ... ( x  - 
1 ) ) ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } ) ) )
2015, 19syl5bb 249 . . . . 5  |-  ( k  =  x  ->  ( E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } )  <->  E. y  e.  NN  E. z  e.  NN  A. w  e.  ( 0 ... ( x  - 
1 ) ) ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } ) ) )
2120notbid 286 . . . 4  |-  ( k  =  x  ->  ( -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } )  <->  -.  E. y  e.  NN  E. z  e.  NN  A. w  e.  ( 0 ... ( x  - 
1 ) ) ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } ) ) )
2221cbvrabv 2899 . . 3  |-  { k  e.  NN  |  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) }  =  { x  e.  NN  |  -.  E. y  e.  NN  E. z  e.  NN  A. w  e.  ( 0 ... (
x  -  1 ) ) ( y  +  ( w  x.  z
) )  e.  ( `' F " { u } ) }
23 simpr 448 . . . . 5  |-  ( ( ( R  e.  Fin  /\  F : NN --> R )  /\  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )  ->  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )
24 sneq 3769 . . . . . . . . . . 11  |-  ( c  =  u  ->  { c }  =  { u } )
2524imaeq2d 5144 . . . . . . . . . 10  |-  ( c  =  u  ->  ( `' F " { c } )  =  ( `' F " { u } ) )
2625eleq2d 2455 . . . . . . . . 9  |-  ( c  =  u  ->  (
( a  +  ( m  x.  d ) )  e.  ( `' F " { c } )  <->  ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } ) ) )
2726ralbidv 2670 . . . . . . . 8  |-  ( c  =  u  ->  ( A. m  e.  (
0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } )  <->  A. m  e.  (
0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } ) ) )
28272rexbidv 2693 . . . . . . 7  |-  ( c  =  u  ->  ( E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } )  <->  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } ) ) )
2928ralbidv 2670 . . . . . 6  |-  ( c  =  u  ->  ( A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } )  <->  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) ) )
3029cbvrexv 2877 . . . . 5  |-  ( E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } )  <->  E. u  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
3123, 30sylnib 296 . . . 4  |-  ( ( ( R  e.  Fin  /\  F : NN --> R )  /\  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )  ->  -.  E. u  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
32 rabn0 3591 . . . . . . 7  |-  ( { k  e.  NN  |  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } ) }  =/=  (/)  <->  E. k  e.  NN  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
33 rexnal 2661 . . . . . . 7  |-  ( E. k  e.  NN  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } )  <->  -.  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
3432, 33bitri 241 . . . . . 6  |-  ( { k  e.  NN  |  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } ) }  =/=  (/)  <->  -.  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
3534ralbii 2674 . . . . 5  |-  ( A. u  e.  R  {
k  e.  NN  |  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } ) }  =/=  (/)  <->  A. u  e.  R  -.  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
36 ralnex 2660 . . . . 5  |-  ( A. u  e.  R  -.  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } )  <->  -.  E. u  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
3735, 36bitri 241 . . . 4  |-  ( A. u  e.  R  {
k  e.  NN  |  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } ) }  =/=  (/)  <->  -.  E. u  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
3831, 37sylibr 204 . . 3  |-  ( ( ( R  e.  Fin  /\  F : NN --> R )  /\  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )  ->  A. u  e.  R  { k  e.  NN  |  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) }  =/=  (/) )
391, 2, 22, 38vdwnnlem3 13293 . 2  |-  -.  (
( R  e.  Fin  /\  F : NN --> R )  /\  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )
40 iman 414 . 2  |-  ( ( ( R  e.  Fin  /\  F : NN --> R )  ->  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )  <->  -.  (
( R  e.  Fin  /\  F : NN --> R )  /\  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) ) )
4139, 40mpbir 201 1  |-  ( ( R  e.  Fin  /\  F : NN --> R )  ->  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    e. wcel 1717    =/= wne 2551   A.wral 2650   E.wrex 2651   {crab 2654   (/)c0 3572   {csn 3758   `'ccnv 4818   "cima 4822   -->wf 5391  (class class class)co 6021   Fincfn 7046   0cc0 8924   1c1 8925    + caddc 8927    x. cmul 8929    - cmin 9224   NNcn 9933   ...cfz 10976
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-2o 6662  df-oadd 6665  df-er 6842  df-map 6957  df-pm 6958  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-sup 7382  df-card 7760  df-cda 7982  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-nn 9934  df-2 9991  df-n0 10155  df-z 10216  df-uz 10422  df-rp 10546  df-fz 10977  df-fl 11130  df-hash 11547  df-vdwap 13264  df-vdwmc 13265  df-vdwpc 13266
  Copyright terms: Public domain W3C validator