MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwnn Structured version   Unicode version

Theorem vdwnn 13366
Description: Van der Waerden's theorem, infinitary version. For any finite coloring  F of the natural numbers, there is a color  c that contains arbitrarily long arithmetic progressions. (Contributed by Mario Carneiro, 13-Sep-2014.)
Assertion
Ref Expression
vdwnn  |-  ( ( R  e.  Fin  /\  F : NN --> R )  ->  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )
Distinct variable groups:    a, c,
d, k, m, F    R, c
Allowed substitution hints:    R( k, m, a, d)

Proof of Theorem vdwnn
Dummy variables  u  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 731 . . 3  |-  ( ( ( R  e.  Fin  /\  F : NN --> R )  /\  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )  ->  R  e.  Fin )
2 simplr 732 . . 3  |-  ( ( ( R  e.  Fin  /\  F : NN --> R )  /\  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )  ->  F : NN --> R )
3 oveq1 6088 . . . . . . . . . . 11  |-  ( m  =  w  ->  (
m  x.  d )  =  ( w  x.  d ) )
43oveq2d 6097 . . . . . . . . . 10  |-  ( m  =  w  ->  (
a  +  ( m  x.  d ) )  =  ( a  +  ( w  x.  d
) ) )
54eleq1d 2502 . . . . . . . . 9  |-  ( m  =  w  ->  (
( a  +  ( m  x.  d ) )  e.  ( `' F " { u } )  <->  ( a  +  ( w  x.  d ) )  e.  ( `' F " { u } ) ) )
65cbvralv 2932 . . . . . . . 8  |-  ( A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } )  <->  A. w  e.  (
0 ... ( k  - 
1 ) ) ( a  +  ( w  x.  d ) )  e.  ( `' F " { u } ) )
7 oveq1 6088 . . . . . . . . . 10  |-  ( a  =  y  ->  (
a  +  ( w  x.  d ) )  =  ( y  +  ( w  x.  d
) ) )
87eleq1d 2502 . . . . . . . . 9  |-  ( a  =  y  ->  (
( a  +  ( w  x.  d ) )  e.  ( `' F " { u } )  <->  ( y  +  ( w  x.  d ) )  e.  ( `' F " { u } ) ) )
98ralbidv 2725 . . . . . . . 8  |-  ( a  =  y  ->  ( A. w  e.  (
0 ... ( k  - 
1 ) ) ( a  +  ( w  x.  d ) )  e.  ( `' F " { u } )  <->  A. w  e.  (
0 ... ( k  - 
1 ) ) ( y  +  ( w  x.  d ) )  e.  ( `' F " { u } ) ) )
106, 9syl5bb 249 . . . . . . 7  |-  ( a  =  y  ->  ( A. m  e.  (
0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } )  <->  A. w  e.  (
0 ... ( k  - 
1 ) ) ( y  +  ( w  x.  d ) )  e.  ( `' F " { u } ) ) )
11 oveq2 6089 . . . . . . . . . 10  |-  ( d  =  z  ->  (
w  x.  d )  =  ( w  x.  z ) )
1211oveq2d 6097 . . . . . . . . 9  |-  ( d  =  z  ->  (
y  +  ( w  x.  d ) )  =  ( y  +  ( w  x.  z
) ) )
1312eleq1d 2502 . . . . . . . 8  |-  ( d  =  z  ->  (
( y  +  ( w  x.  d ) )  e.  ( `' F " { u } )  <->  ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } ) ) )
1413ralbidv 2725 . . . . . . 7  |-  ( d  =  z  ->  ( A. w  e.  (
0 ... ( k  - 
1 ) ) ( y  +  ( w  x.  d ) )  e.  ( `' F " { u } )  <->  A. w  e.  (
0 ... ( k  - 
1 ) ) ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } ) ) )
1510, 14cbvrex2v 2941 . . . . . 6  |-  ( E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } )  <->  E. y  e.  NN  E. z  e.  NN  A. w  e.  ( 0 ... (
k  -  1 ) ) ( y  +  ( w  x.  z
) )  e.  ( `' F " { u } ) )
16 oveq1 6088 . . . . . . . . 9  |-  ( k  =  x  ->  (
k  -  1 )  =  ( x  - 
1 ) )
1716oveq2d 6097 . . . . . . . 8  |-  ( k  =  x  ->  (
0 ... ( k  - 
1 ) )  =  ( 0 ... (
x  -  1 ) ) )
1817raleqdv 2910 . . . . . . 7  |-  ( k  =  x  ->  ( A. w  e.  (
0 ... ( k  - 
1 ) ) ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } )  <->  A. w  e.  (
0 ... ( x  - 
1 ) ) ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } ) ) )
19182rexbidv 2748 . . . . . 6  |-  ( k  =  x  ->  ( E. y  e.  NN  E. z  e.  NN  A. w  e.  ( 0 ... ( k  - 
1 ) ) ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } )  <->  E. y  e.  NN  E. z  e.  NN  A. w  e.  ( 0 ... ( x  - 
1 ) ) ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } ) ) )
2015, 19syl5bb 249 . . . . 5  |-  ( k  =  x  ->  ( E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } )  <->  E. y  e.  NN  E. z  e.  NN  A. w  e.  ( 0 ... ( x  - 
1 ) ) ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } ) ) )
2120notbid 286 . . . 4  |-  ( k  =  x  ->  ( -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } )  <->  -.  E. y  e.  NN  E. z  e.  NN  A. w  e.  ( 0 ... ( x  - 
1 ) ) ( y  +  ( w  x.  z ) )  e.  ( `' F " { u } ) ) )
2221cbvrabv 2955 . . 3  |-  { k  e.  NN  |  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) }  =  { x  e.  NN  |  -.  E. y  e.  NN  E. z  e.  NN  A. w  e.  ( 0 ... (
x  -  1 ) ) ( y  +  ( w  x.  z
) )  e.  ( `' F " { u } ) }
23 simpr 448 . . . . 5  |-  ( ( ( R  e.  Fin  /\  F : NN --> R )  /\  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )  ->  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )
24 sneq 3825 . . . . . . . . . . 11  |-  ( c  =  u  ->  { c }  =  { u } )
2524imaeq2d 5203 . . . . . . . . . 10  |-  ( c  =  u  ->  ( `' F " { c } )  =  ( `' F " { u } ) )
2625eleq2d 2503 . . . . . . . . 9  |-  ( c  =  u  ->  (
( a  +  ( m  x.  d ) )  e.  ( `' F " { c } )  <->  ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } ) ) )
2726ralbidv 2725 . . . . . . . 8  |-  ( c  =  u  ->  ( A. m  e.  (
0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } )  <->  A. m  e.  (
0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } ) ) )
28272rexbidv 2748 . . . . . . 7  |-  ( c  =  u  ->  ( E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } )  <->  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } ) ) )
2928ralbidv 2725 . . . . . 6  |-  ( c  =  u  ->  ( A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } )  <->  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) ) )
3029cbvrexv 2933 . . . . 5  |-  ( E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } )  <->  E. u  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
3123, 30sylnib 296 . . . 4  |-  ( ( ( R  e.  Fin  /\  F : NN --> R )  /\  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )  ->  -.  E. u  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
32 rabn0 3647 . . . . . . 7  |-  ( { k  e.  NN  |  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } ) }  =/=  (/)  <->  E. k  e.  NN  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
33 rexnal 2716 . . . . . . 7  |-  ( E. k  e.  NN  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } )  <->  -.  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
3432, 33bitri 241 . . . . . 6  |-  ( { k  e.  NN  |  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } ) }  =/=  (/)  <->  -.  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
3534ralbii 2729 . . . . 5  |-  ( A. u  e.  R  {
k  e.  NN  |  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } ) }  =/=  (/)  <->  A. u  e.  R  -.  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
36 ralnex 2715 . . . . 5  |-  ( A. u  e.  R  -.  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } )  <->  -.  E. u  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
3735, 36bitri 241 . . . 4  |-  ( A. u  e.  R  {
k  e.  NN  |  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { u } ) }  =/=  (/)  <->  -.  E. u  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) )
3831, 37sylibr 204 . . 3  |-  ( ( ( R  e.  Fin  /\  F : NN --> R )  /\  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )  ->  A. u  e.  R  { k  e.  NN  |  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { u } ) }  =/=  (/) )
391, 2, 22, 38vdwnnlem3 13365 . 2  |-  -.  (
( R  e.  Fin  /\  F : NN --> R )  /\  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )
40 iman 414 . 2  |-  ( ( ( R  e.  Fin  /\  F : NN --> R )  ->  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )  <->  -.  (
( R  e.  Fin  /\  F : NN --> R )  /\  -.  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) ) )
4139, 40mpbir 201 1  |-  ( ( R  e.  Fin  /\  F : NN --> R )  ->  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    e. wcel 1725    =/= wne 2599   A.wral 2705   E.wrex 2706   {crab 2709   (/)c0 3628   {csn 3814   `'ccnv 4877   "cima 4881   -->wf 5450  (class class class)co 6081   Fincfn 7109   0cc0 8990   1c1 8991    + caddc 8993    x. cmul 8995    - cmin 9291   NNcn 10000   ...cfz 11043
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-map 7020  df-pm 7021  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-sup 7446  df-card 7826  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-2 10058  df-n0 10222  df-z 10283  df-uz 10489  df-rp 10613  df-fz 11044  df-fl 11202  df-hash 11619  df-vdwap 13336  df-vdwmc 13337  df-vdwpc 13338
  Copyright terms: Public domain W3C validator