MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwnnlem2 Structured version   Unicode version

Theorem vdwnnlem2 13356
Description: Lemma for vdwnn 13358. The set of all "bad"  k for the theorem is upwards-closed, because a long AP implies a short AP. (Contributed by Mario Carneiro, 13-Sep-2014.)
Hypotheses
Ref Expression
vdwnn.1  |-  ( ph  ->  R  e.  Fin )
vdwnn.2  |-  ( ph  ->  F : NN --> R )
vdwnn.3  |-  S  =  { k  e.  NN  |  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) }
Assertion
Ref Expression
vdwnnlem2  |-  ( (
ph  /\  B  e.  ( ZZ>= `  A )
)  ->  ( A  e.  S  ->  B  e.  S ) )
Distinct variable groups:    a, d,
k, m, A    a,
c, d, m    ph, a,
c, d    R, a,
c, d    B, a,
d, k, m    F, a    k, c, F, d, m    S, a, d, k, m
Allowed substitution hints:    ph( k, m)    A( c)    B( c)    R( k, m)    S( c)

Proof of Theorem vdwnnlem2
StepHypRef Expression
1 eluzel2 10485 . . . . . . . . . . 11  |-  ( B  e.  ( ZZ>= `  A
)  ->  A  e.  ZZ )
2 peano2zm 10312 . . . . . . . . . . 11  |-  ( A  e.  ZZ  ->  ( A  -  1 )  e.  ZZ )
31, 2syl 16 . . . . . . . . . 10  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A  -  1 )  e.  ZZ )
4 id 20 . . . . . . . . . . 11  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  ( ZZ>= `  A )
)
51zcnd 10368 . . . . . . . . . . . . 13  |-  ( B  e.  ( ZZ>= `  A
)  ->  A  e.  CC )
6 ax-1cn 9040 . . . . . . . . . . . . 13  |-  1  e.  CC
7 npcan 9306 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  - 
1 )  +  1 )  =  A )
85, 6, 7sylancl 644 . . . . . . . . . . . 12  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ( A  -  1 )  +  1 )  =  A )
98fveq2d 5724 . . . . . . . . . . 11  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ZZ>= `  ( ( A  - 
1 )  +  1 ) )  =  (
ZZ>= `  A ) )
104, 9eleqtrrd 2512 . . . . . . . . . 10  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  ( ZZ>= `  ( ( A  -  1 )  +  1 ) ) )
11 eluzp1m1 10501 . . . . . . . . . 10  |-  ( ( ( A  -  1 )  e.  ZZ  /\  B  e.  ( ZZ>= `  ( ( A  - 
1 )  +  1 ) ) )  -> 
( B  -  1 )  e.  ( ZZ>= `  ( A  -  1
) ) )
123, 10, 11syl2anc 643 . . . . . . . . 9  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  -  1 )  e.  ( ZZ>= `  ( A  -  1 ) ) )
1312ad2antlr 708 . . . . . . . 8  |-  ( ( ( ph  /\  B  e.  ( ZZ>= `  A )
)  /\  A  e.  NN )  ->  ( B  -  1 )  e.  ( ZZ>= `  ( A  -  1 ) ) )
14 fzss2 11084 . . . . . . . 8  |-  ( ( B  -  1 )  e.  ( ZZ>= `  ( A  -  1 ) )  ->  ( 0 ... ( A  - 
1 ) )  C_  ( 0 ... ( B  -  1 ) ) )
15 ssralv 3399 . . . . . . . 8  |-  ( ( 0 ... ( A  -  1 ) ) 
C_  ( 0 ... ( B  -  1 ) )  ->  ( A. m  e.  (
0 ... ( B  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } )  ->  A. m  e.  ( 0 ... ( A  -  1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } ) ) )
1613, 14, 153syl 19 . . . . . . 7  |-  ( ( ( ph  /\  B  e.  ( ZZ>= `  A )
)  /\  A  e.  NN )  ->  ( A. m  e.  ( 0 ... ( B  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } )  ->  A. m  e.  ( 0 ... ( A  -  1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } ) ) )
1716reximdv 2809 . . . . . 6  |-  ( ( ( ph  /\  B  e.  ( ZZ>= `  A )
)  /\  A  e.  NN )  ->  ( E. d  e.  NN  A. m  e.  ( 0 ... ( B  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } )  ->  E. d  e.  NN  A. m  e.  ( 0 ... ( A  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } ) ) )
1817reximdv 2809 . . . . 5  |-  ( ( ( ph  /\  B  e.  ( ZZ>= `  A )
)  /\  A  e.  NN )  ->  ( E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( B  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } )  ->  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( A  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) ) )
1918con3d 127 . . . 4  |-  ( ( ( ph  /\  B  e.  ( ZZ>= `  A )
)  /\  A  e.  NN )  ->  ( -. 
E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( A  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } )  ->  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( B  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) ) )
20 id 20 . . . . 5  |-  ( A  e.  NN  ->  A  e.  NN )
21 simpr 448 . . . . 5  |-  ( (
ph  /\  B  e.  ( ZZ>= `  A )
)  ->  B  e.  ( ZZ>= `  A )
)
22 nnuz 10513 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
2322uztrn2 10495 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  ( ZZ>= `  A ) )  ->  B  e.  NN )
2420, 21, 23syl2anr 465 . . . 4  |-  ( ( ( ph  /\  B  e.  ( ZZ>= `  A )
)  /\  A  e.  NN )  ->  B  e.  NN )
2519, 24jctild 528 . . 3  |-  ( ( ( ph  /\  B  e.  ( ZZ>= `  A )
)  /\  A  e.  NN )  ->  ( -. 
E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( A  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } )  ->  ( B  e.  NN  /\  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( B  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) ) ) )
2625expimpd 587 . 2  |-  ( (
ph  /\  B  e.  ( ZZ>= `  A )
)  ->  ( ( A  e.  NN  /\  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( A  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) )  -> 
( B  e.  NN  /\ 
-.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( B  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } ) ) ) )
27 oveq1 6080 . . . . . . 7  |-  ( k  =  A  ->  (
k  -  1 )  =  ( A  - 
1 ) )
2827oveq2d 6089 . . . . . 6  |-  ( k  =  A  ->  (
0 ... ( k  - 
1 ) )  =  ( 0 ... ( A  -  1 ) ) )
2928raleqdv 2902 . . . . 5  |-  ( k  =  A  ->  ( A. m  e.  (
0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } )  <->  A. m  e.  (
0 ... ( A  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } ) ) )
30292rexbidv 2740 . . . 4  |-  ( k  =  A  ->  ( E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } )  <->  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( A  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } ) ) )
3130notbid 286 . . 3  |-  ( k  =  A  ->  ( -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } )  <->  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( A  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } ) ) )
32 vdwnn.3 . . 3  |-  S  =  { k  e.  NN  |  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
k  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) }
3331, 32elrab2 3086 . 2  |-  ( A  e.  S  <->  ( A  e.  NN  /\  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( A  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) ) )
34 oveq1 6080 . . . . . . 7  |-  ( k  =  B  ->  (
k  -  1 )  =  ( B  - 
1 ) )
3534oveq2d 6089 . . . . . 6  |-  ( k  =  B  ->  (
0 ... ( k  - 
1 ) )  =  ( 0 ... ( B  -  1 ) ) )
3635raleqdv 2902 . . . . 5  |-  ( k  =  B  ->  ( A. m  e.  (
0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } )  <->  A. m  e.  (
0 ... ( B  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } ) ) )
37362rexbidv 2740 . . . 4  |-  ( k  =  B  ->  ( E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } )  <->  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( B  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } ) ) )
3837notbid 286 . . 3  |-  ( k  =  B  ->  ( -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( k  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } )  <->  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( B  - 
1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } ) ) )
3938, 32elrab2 3086 . 2  |-  ( B  e.  S  <->  ( B  e.  NN  /\  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( B  -  1 ) ) ( a  +  ( m  x.  d
) )  e.  ( `' F " { c } ) ) )
4026, 33, 393imtr4g 262 1  |-  ( (
ph  /\  B  e.  ( ZZ>= `  A )
)  ->  ( A  e.  S  ->  B  e.  S ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698   {crab 2701    C_ wss 3312   {csn 3806   `'ccnv 4869   "cima 4873   -->wf 5442   ` cfv 5446  (class class class)co 6073   Fincfn 7101   CCcc 8980   0cc0 8982   1c1 8983    + caddc 8985    x. cmul 8987    - cmin 9283   NNcn 9992   ZZcz 10274   ZZ>=cuz 10480   ...cfz 11035
This theorem is referenced by:  vdwnnlem3  13357
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-n0 10214  df-z 10275  df-uz 10481  df-fz 11036
  Copyright terms: Public domain W3C validator