MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmalogdivsum2 Unicode version

Theorem vmalogdivsum2 21215
Description: The sum  sum_ n  <_  x , Λ ( n ) log ( x  /  n )  /  n is asymptotic to  log ^ 2 ( x )  / 
2  +  O ( log x ). Exercise 9.1.7 of [Shapiro], p. 336. (Contributed by Mario Carneiro, 30-May-2016.)
Assertion
Ref Expression
vmalogdivsum2  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O ( 1 )
Distinct variable group:    x, n

Proof of Theorem vmalogdivsum2
Dummy variables  k  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 11295 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
2 elfznn 11064 . . . . . . . . . . . . 13  |-  ( k  e.  ( 1 ... ( |_ `  x
) )  ->  k  e.  NN )
32adantl 453 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  e.  NN )
43nnrpd 10631 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  e.  RR+ )
54relogcld 20501 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  k )  e.  RR )
65, 3nndivred 10032 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  k )  / 
k )  e.  RR )
71, 6fsumrecl 12511 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  e.  RR )
87recnd 9098 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  e.  CC )
9 elioore 10930 . . . . . . . . . . . . 13  |-  ( x  e.  ( 1 (,) 
+oo )  ->  x  e.  RR )
109adantl 453 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  x  e.  RR )
11 1rp 10600 . . . . . . . . . . . . 13  |-  1  e.  RR+
1211a1i 11 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  e.  RR+ )
1312rpred 10632 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  e.  RR )
14 eliooord 10954 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 1 (,) 
+oo )  ->  (
1  <  x  /\  x  <  +oo ) )
1514adantl 453 . . . . . . . . . . . . . 14  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
1  <  x  /\  x  <  +oo ) )
1615simpld 446 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  <  x )
1713, 10, 16ltled 9205 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  <_  x )
1810, 12, 17rpgecld 10667 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  x  e.  RR+ )
1918relogcld 20501 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  e.  RR )
2019resqcld 11532 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( log `  x
) ^ 2 )  e.  RR )
2120rehalfcld 10198 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( log `  x
) ^ 2 )  /  2 )  e.  RR )
2221recnd 9098 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( log `  x
) ^ 2 )  /  2 )  e.  CC )
2319recnd 9098 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  e.  CC )
2410, 16rplogcld 20507 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  e.  RR+ )
2524rpne0d 10637 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  =/=  0 )
268, 22, 23, 25divsubdird 9813 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  / 
( log `  x
) )  =  ( ( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( ( ( log `  x ) ^ 2 )  /  2 )  /  ( log `  x
) ) ) )
277, 21resubcld 9449 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  e.  RR )
2827recnd 9098 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  e.  CC )
2928, 23, 25divrecd 9777 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  / 
( log `  x
) )  =  ( ( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  x.  ( 1  /  ( log `  x ) ) ) )
3020recnd 9098 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( log `  x
) ^ 2 )  e.  CC )
31 2cn 10054 . . . . . . . . . 10  |-  2  e.  CC
3231a1i 11 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  2  e.  CC )
33 2ne0 10067 . . . . . . . . . 10  |-  2  =/=  0
3433a1i 11 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  2  =/=  0 )
3530, 32, 23, 34, 25divdiv32d 9799 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( log `  x ) ^ 2 )  /  2 )  /  ( log `  x
) )  =  ( ( ( ( log `  x ) ^ 2 )  /  ( log `  x ) )  / 
2 ) )
3623sqvald 11503 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( log `  x
) ^ 2 )  =  ( ( log `  x )  x.  ( log `  x ) ) )
3736oveq1d 6082 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( log `  x
) ^ 2 )  /  ( log `  x
) )  =  ( ( ( log `  x
)  x.  ( log `  x ) )  / 
( log `  x
) ) )
3823, 23, 25divcan3d 9779 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( log `  x
)  x.  ( log `  x ) )  / 
( log `  x
) )  =  ( log `  x ) )
3937, 38eqtrd 2462 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( log `  x
) ^ 2 )  /  ( log `  x
) )  =  ( log `  x ) )
4039oveq1d 6082 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( log `  x ) ^ 2 )  /  ( log `  x ) )  / 
2 )  =  ( ( log `  x
)  /  2 ) )
4135, 40eqtrd 2462 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( log `  x ) ^ 2 )  /  2 )  /  ( log `  x
) )  =  ( ( log `  x
)  /  2 ) )
4241oveq2d 6083 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( ( ( log `  x ) ^ 2 )  /  2 )  /  ( log `  x
) ) )  =  ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) ) )
4326, 29, 423eqtr3rd 2471 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) )  =  ( (
sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  x.  ( 1  /  ( log `  x ) ) ) )
4443mpteq2dva 4282 . . . 4  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) ) )  =  ( x  e.  ( 1 (,)  +oo )  |->  ( (
sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  x.  ( 1  /  ( log `  x ) ) ) ) )
4524rprecred 10643 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
1  /  ( log `  x ) )  e.  RR )
4618ex 424 . . . . . . 7  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  ->  x  e.  RR+ )
)
4746ssrdv 3341 . . . . . 6  |-  (  T. 
->  ( 1 (,)  +oo )  C_  RR+ )
48 eqid 2430 . . . . . . . . 9  |-  ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  =  ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )
4948logdivsum 21210 . . . . . . . 8  |-  ( ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) ) : RR+ --> RR  /\  (
x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  e.  dom  ~~> r  /\  ( ( ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  ~~> r  1  /\  1  e.  RR+  /\  _e  <_  1 )  ->  ( abs `  ( ( ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) ) `
 1 )  - 
1 ) )  <_ 
( ( log `  1
)  /  1 ) ) )
5049simp2i 967 . . . . . . 7  |-  ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  e.  dom  ~~> r
51 rlimdmo1 12394 . . . . . . 7  |-  ( ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  e.  dom  ~~> r  -> 
( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  e.  O ( 1 ) )
5250, 51mp1i 12 . . . . . 6  |-  (  T. 
->  ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  e.  O ( 1 ) )
5347, 52o1res2 12340 . . . . 5  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  e.  O ( 1 ) )
54 divlogrlim 20509 . . . . . 6  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( 1  /  ( log `  x
) ) )  ~~> r  0
55 rlimo1 12393 . . . . . 6  |-  ( ( x  e.  ( 1 (,)  +oo )  |->  ( 1  /  ( log `  x
) ) )  ~~> r  0  ->  ( x  e.  ( 1 (,)  +oo )  |->  ( 1  / 
( log `  x
) ) )  e.  O ( 1 ) )
5654, 55mp1i 12 . . . . 5  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( 1  /  ( log `  x ) ) )  e.  O ( 1 ) )
5727, 45, 53, 56o1mul2 12401 . . . 4  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  x.  ( 1  /  ( log `  x ) ) ) )  e.  O
( 1 ) )
5844, 57eqeltrd 2504 . . 3  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) ) )  e.  O
( 1 ) )
598, 23, 25divcld 9774 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  e.  CC )
6023halfcld 10196 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( log `  x
)  /  2 )  e.  CC )
6159, 60subcld 9395 . . . 4  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) )  e.  CC )
62 elfznn 11064 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
6362adantl 453 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
64 vmacl 20884 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
6563, 64syl 16 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
6665, 63nndivred 10032 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  RR )
6718adantr 452 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
6863nnrpd 10631 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
6967, 68rpdivcld 10649 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
7069relogcld 20501 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  e.  RR )
7166, 70remulcld 9100 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) )  e.  RR )
721, 71fsumrecl 12511 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  e.  RR )
7372recnd 9098 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  e.  CC )
7424rpcnd 10634 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  e.  CC )
7573, 74, 25divcld 9774 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  e.  CC )
7674halfcld 10196 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( log `  x
)  /  2 )  e.  CC )
7775, 76subcld 9395 . . . 4  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) )  e.  CC )
7859, 75, 60nnncan2d 9430 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) )  -  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  =  ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) ) ) )
798, 73, 23, 25divsubdird 9813 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) )  / 
( log `  x
) )  =  ( ( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) ) ) )
80 fzfid 11295 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( x  /  n
) ) )  e. 
Fin )
8165adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  (Λ `  n
)  e.  RR )
8263adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  n  e.  NN )
83 elfznn 11064 . . . . . . . . . . . . . . 15  |-  ( m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) )  ->  m  e.  NN )
8483adantl 453 . . . . . . . . . . . . . 14  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  m  e.  NN )
8582, 84nnmulcld 10031 . . . . . . . . . . . . 13  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( n  x.  m )  e.  NN )
8681, 85nndivred 10032 . . . . . . . . . . . 12  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  n )  /  (
n  x.  m ) )  e.  RR )
8780, 86fsumrecl 12511 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) )  e.  RR )
8887recnd 9098 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) )  e.  CC )
8971recnd 9098 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) )  e.  CC )
901, 88, 89fsumsub 12554 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) )  -  ( ( (Λ `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  n )  /  ( n  x.  m ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )
9165recnd 9098 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  CC )
9263nncnd 10000 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
9363nnne0d 10028 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  =/=  0 )
9491, 92, 93divcld 9774 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  CC )
9584nnrecred 10029 . . . . . . . . . . . . . 14  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( 1  /  m )  e.  RR )
9680, 95fsumrecl 12511 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  e.  RR )
9796recnd 9098 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  e.  CC )
9870recnd 9098 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  e.  CC )
9994, 97, 98subdid 9473 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  -  ( log `  (
x  /  n ) ) ) )  =  ( ( ( (Λ `  n )  /  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) )  -  (
( (Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) ) ) )
10091adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  (Λ `  n
)  e.  CC )
10192adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  n  e.  CC )
10284nncnd 10000 . . . . . . . . . . . . . . . 16  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  m  e.  CC )
10393adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  n  =/=  0 )
10484nnne0d 10028 . . . . . . . . . . . . . . . 16  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  m  =/=  0 )
105100, 101, 102, 103, 104divdiv1d 9805 . . . . . . . . . . . . . . 15  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
(Λ `  n )  /  n )  /  m
)  =  ( (Λ `  n )  /  (
n  x.  m ) ) )
106100, 101, 103divcld 9774 . . . . . . . . . . . . . . . 16  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  n )  /  n
)  e.  CC )
107106, 102, 104divrecd 9777 . . . . . . . . . . . . . . 15  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
(Λ `  n )  /  n )  /  m
)  =  ( ( (Λ `  n )  /  n )  x.  (
1  /  m ) ) )
108105, 107eqtr3d 2464 . . . . . . . . . . . . . 14  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  n )  /  (
n  x.  m ) )  =  ( ( (Λ `  n )  /  n )  x.  (
1  /  m ) ) )
109108sumeq2dv 12480 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( (Λ `  n
)  /  n )  x.  ( 1  /  m ) ) )
110102, 104reccld 9767 . . . . . . . . . . . . . 14  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( 1  /  m )  e.  CC )
11180, 94, 110fsummulc2 12550 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m ) )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( (Λ `  n
)  /  n )  x.  ( 1  /  m ) ) )
112109, 111eqtr4d 2465 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) )  =  ( ( (Λ `  n )  /  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) ) )
113112oveq1d 6082 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  n )  /  (
n  x.  m ) )  -  ( ( (Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) ) )  =  ( ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
) )  -  (
( (Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) ) ) )
11499, 113eqtr4d 2465 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  -  ( log `  (
x  /  n ) ) ) )  =  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) )  -  ( ( (Λ `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )
115114sumeq2dv 12480 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) )  -  ( ( (Λ `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )
116 vmasum 20983 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  sum_ n  e.  { y  e.  NN  |  y  ||  k }  (Λ `  n )  =  ( log `  k
) )
1173, 116syl 16 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ n  e. 
{ y  e.  NN  |  y  ||  k }  (Λ `  n )  =  ( log `  k
) )
118117oveq1d 6082 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ n  e.  { y  e.  NN  |  y  ||  k }  (Λ `  n
)  /  k )  =  ( ( log `  k )  /  k
) )
119 fzfid 11295 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... k )  e. 
Fin )
120 sgmss 20872 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  { y  e.  NN  |  y 
||  k }  C_  ( 1 ... k
) )
1213, 120syl 16 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  { y  e.  NN  |  y  ||  k }  C_  ( 1 ... k ) )
122 ssfi 7315 . . . . . . . . . . . . . . 15  |-  ( ( ( 1 ... k
)  e.  Fin  /\  { y  e.  NN  | 
y  ||  k }  C_  ( 1 ... k
) )  ->  { y  e.  NN  |  y 
||  k }  e.  Fin )
123119, 121, 122syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  { y  e.  NN  |  y  ||  k }  e.  Fin )
1243nncnd 10000 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  e.  CC )
125 ssrab2 3415 . . . . . . . . . . . . . . . . . 18  |-  { y  e.  NN  |  y 
||  k }  C_  NN
126 simprr 734 . . . . . . . . . . . . . . . . . 18  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  ->  n  e.  { y  e.  NN  |  y  ||  k } )
127125, 126sseldi 3333 . . . . . . . . . . . . . . . . 17  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  ->  n  e.  NN )
128127, 64syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  -> 
(Λ `  n )  e.  RR )
129128recnd 9098 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  -> 
(Λ `  n )  e.  CC )
130129anassrs 630 . . . . . . . . . . . . . 14  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
)  ->  (Λ `  n
)  e.  CC )
1313nnne0d 10028 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  =/=  0 )
132123, 124, 130, 131fsumdivc 12552 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ n  e.  { y  e.  NN  |  y  ||  k }  (Λ `  n
)  /  k )  =  sum_ n  e.  {
y  e.  NN  | 
y  ||  k } 
( (Λ `  n )  /  k ) )
133118, 132eqtr3d 2464 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  k )  / 
k )  =  sum_ n  e.  { y  e.  NN  |  y  ||  k }  ( (Λ `  n )  /  k
) )
134133sumeq2dv 12480 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  =  sum_ k  e.  ( 1 ... ( |_
`  x ) )
sum_ n  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  n )  / 
k ) )
135 oveq2 6075 . . . . . . . . . . . 12  |-  ( k  =  ( n  x.  m )  ->  (
(Λ `  n )  / 
k )  =  ( (Λ `  n )  /  ( n  x.  m ) ) )
1362ad2antrl 709 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  -> 
k  e.  NN )
137136nncnd 10000 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  -> 
k  e.  CC )
138136nnne0d 10028 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  -> 
k  =/=  0 )
139129, 137, 138divcld 9774 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  -> 
( (Λ `  n )  /  k )  e.  CC )
140135, 10, 139dvdsflsumcom 20956 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) )
sum_ n  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  n )  / 
k )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) ) )
141134, 140eqtrd 2462 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  n )  /  ( n  x.  m ) ) )
142141oveq1d 6082 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  n )  /  ( n  x.  m ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )
14390, 115, 1423eqtr4rd 2473 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) ) )
144143oveq1d 6082 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) )  / 
( log `  x
) )  =  (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) )
14578, 79, 1443eqtr2d 2468 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) )  -  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) )
146145mpteq2dva 4282 . . . . 5  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) )  -  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) ) )  =  ( x  e.  ( 1 (,)  +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) ) )
147 1re 9074 . . . . . . . 8  |-  1  e.  RR
148147a1i 11 . . . . . . 7  |-  (  T. 
->  1  e.  RR )
1491, 66fsumrecl 12511 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  e.  RR )
150149, 24rerpdivcld 10659 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  /  ( log `  x ) )  e.  RR )
151 ioossre 10956 . . . . . . . . . . 11  |-  ( 1 (,)  +oo )  C_  RR
152 ax-1cn 9032 . . . . . . . . . . 11  |-  1  e.  CC
153 o1const 12396 . . . . . . . . . . 11  |-  ( ( ( 1 (,)  +oo )  C_  RR  /\  1  e.  CC )  ->  (
x  e.  ( 1 (,)  +oo )  |->  1 )  e.  O ( 1 ) )
154151, 152, 153mp2an 654 . . . . . . . . . 10  |-  ( x  e.  ( 1 (,) 
+oo )  |->  1 )  e.  O ( 1 )
155154a1i 11 . . . . . . . . 9  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  1 )  e.  O
( 1 ) )
156150recnd 9098 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  /  ( log `  x ) )  e.  CC )
15712rpcnd 10634 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  e.  CC )
158149recnd 9098 . . . . . . . . . . . . . 14  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  e.  CC )
159158, 23, 23, 25divsubdird 9813 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  /  ( log `  x ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  /  ( log `  x ) )  -  ( ( log `  x
)  /  ( log `  x ) ) ) )
160158, 23subcld 9395 . . . . . . . . . . . . . 14  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  ( log `  x ) )  e.  CC )
161160, 23, 25divrecd 9777 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  /  ( log `  x ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( log `  x ) )  x.  ( 1  /  ( log `  x ) ) ) )
16223, 25dividd 9772 . . . . . . . . . . . . . 14  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( log `  x
)  /  ( log `  x ) )  =  1 )
163162oveq2d 6083 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  -  (
( log `  x
)  /  ( log `  x ) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  /  ( log `  x ) )  - 
1 ) )
164159, 161, 1633eqtr3rd 2471 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  -  1 )  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  ( log `  x ) )  x.  ( 1  / 
( log `  x
) ) ) )
165164mpteq2dva 4282 . . . . . . . . . . 11  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  -  1 ) )  =  ( x  e.  ( 1 (,)  +oo )  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  ( log `  x ) )  x.  ( 1  / 
( log `  x
) ) ) ) )
166149, 19resubcld 9449 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  ( log `  x ) )  e.  RR )
167 vmadivsum 21159 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( log `  x ) ) )  e.  O ( 1 )
168167a1i 11 . . . . . . . . . . . . 13  |-  (  T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) ) )  e.  O ( 1 ) )
16947, 168o1res2 12340 . . . . . . . . . . . 12  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) ) )  e.  O ( 1 ) )
170166, 45, 169, 56o1mul2 12401 . . . . . . . . . . 11  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  x.  (
1  /  ( log `  x ) ) ) )  e.  O ( 1 ) )
171165, 170eqeltrd 2504 . . . . . . . . . 10  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  -  1 ) )  e.  O
( 1 ) )
172156, 157, 171o1dif 12406 . . . . . . . . 9  |-  (  T. 
->  ( ( x  e.  ( 1 (,)  +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) ) )  e.  O ( 1 )  <-> 
( x  e.  ( 1 (,)  +oo )  |->  1 )  e.  O
( 1 ) ) )
173155, 172mpbird 224 . . . . . . . 8  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) ) )  e.  O ( 1 ) )
174150, 173o1lo1d 12316 . . . . . . 7  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) ) )  e. 
<_ O ( 1 ) )
17596, 70resubcld 9449 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) )  e.  RR )
17666, 175remulcld 9100 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  -  ( log `  (
x  /  n ) ) ) )  e.  RR )
1771, 176fsumrecl 12511 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  e.  RR )
178177, 24rerpdivcld 10659 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) )  e.  RR )
179147a1i 11 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
180 vmage0 20887 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  0  <_  (Λ `  n )
)
18163, 180syl 16 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  (Λ `  n ) )
18265, 68, 181divge0d 10668 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( (Λ `  n )  /  n ) )
18369rpred 10632 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
18492mulid2d 9090 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  n )  =  n )
185 fznnfl 11226 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  RR  ->  (
n  e.  ( 1 ... ( |_ `  x ) )  <->  ( n  e.  NN  /\  n  <_  x ) ) )
18610, 185syl 16 . . . . . . . . . . . . . . . . 17  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
n  e.  ( 1 ... ( |_ `  x ) )  <->  ( n  e.  NN  /\  n  <_  x ) ) )
187186simplbda 608 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  <_  x )
188184, 187eqbrtrd 4219 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  n )  <_  x )
18910adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
190179, 189, 68lemuldivd 10677 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
1  x.  n )  <_  x  <->  1  <_  ( x  /  n ) ) )
191188, 190mpbid 202 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  ( x  /  n ) )
192 harmonicubnd 20831 . . . . . . . . . . . . . 14  |-  ( ( ( x  /  n
)  e.  RR  /\  1  <_  ( x  /  n ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  <_  ( ( log `  ( x  /  n
) )  +  1 ) )
193183, 191, 192syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  <_  ( ( log `  ( x  /  n ) )  +  1 ) )
19496, 70, 179lesubadd2d 9609 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  -  ( log `  (
x  /  n ) ) )  <_  1  <->  sum_
m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  <_  ( ( log `  ( x  /  n
) )  +  1 ) ) )
195193, 194mpbird 224 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) )  <_  1 )
196175, 179, 66, 182, 195lemul2ad 9935 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  -  ( log `  (
x  /  n ) ) ) )  <_ 
( ( (Λ `  n
)  /  n )  x.  1 ) )
19794mulid1d 9089 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  1 )  =  ( (Λ `  n )  /  n
) )
198196, 197breqtrd 4223 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  -  ( log `  (
x  /  n ) ) ) )  <_ 
( (Λ `  n )  /  n ) )
1991, 176, 66, 198fsumle 12561 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n ) )
200177, 149, 24, 199lediv1dd 10686 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  /  ( log `  x ) ) )
201200adantrr 698 . . . . . . 7  |-  ( (  T.  /\  ( x  e.  ( 1 (,) 
+oo )  /\  1  <_  x ) )  -> 
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  /  ( log `  x ) ) )
202148, 174, 150, 178, 201lo1le 12428 . . . . . 6  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) )  e. 
<_ O ( 1 ) )
203 0re 9075 . . . . . . . 8  |-  0  e.  RR
204203a1i 11 . . . . . . 7  |-  (  T. 
->  0  e.  RR )
205 harmoniclbnd 20830 . . . . . . . . . . . 12  |-  ( ( x  /  n )  e.  RR+  ->  ( log `  ( x  /  n
) )  <_  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) )
20669, 205syl 16 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  <_  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) )
20796, 70subge0d 9600 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 0  <_  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) )  <->  ( log `  ( x  /  n
) )  <_  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) ) )
208206, 207mpbird 224 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  -  ( log `  (
x  /  n ) ) ) )
20966, 175, 182, 208mulge0d 9587 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) ) )
2101, 176, 209fsumge0 12557 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  0  <_ 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) ) )
211177, 24, 210divge0d 10668 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  0  <_  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) )
212178, 204, 211o1lo12 12315 . . . . . 6  |-  (  T. 
->  ( ( x  e.  ( 1 (,)  +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) )  e.  O ( 1 )  <-> 
( x  e.  ( 1 (,)  +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) )  e. 
<_ O ( 1 ) ) )
213202, 212mpbird 224 . . . . 5  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) )  e.  O ( 1 ) )
214146, 213eqeltrd 2504 . . . 4  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) )  -  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) ) )  e.  O ( 1 ) )
21561, 77, 214o1dif 12406 . . 3  |-  (  T. 
->  ( ( x  e.  ( 1 (,)  +oo )  |->  ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) ) )  e.  O
( 1 )  <->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) ) )  e.  O
( 1 ) ) )
21658, 215mpbid 202 . 2  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O ( 1 ) )
217216trud 1332 1  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O ( 1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    T. wtru 1325    = wceq 1652    e. wcel 1725    =/= wne 2593   {crab 2696    C_ wss 3307   class class class wbr 4199    e. cmpt 4253   dom cdm 4864   -->wf 5436   ` cfv 5440  (class class class)co 6067   Fincfn 7095   CCcc 8972   RRcr 8973   0cc0 8974   1c1 8975    + caddc 8977    x. cmul 8979    +oocpnf 9101    < clt 9104    <_ cle 9105    - cmin 9275    / cdiv 9661   NNcn 9984   2c2 10033   RR+crp 10596   (,)cioo 10900   ...cfz 11027   |_cfl 11184   ^cexp 11365   abscabs 12022    ~~> r crli 12262   O ( 1 )co1 12263   <_ O ( 1 )clo1 12264   sum_csu 12462   _eceu 12648    || cdivides 12835   logclog 20435  Λcvma 20857
This theorem is referenced by:  vmalogdivsum  21216  2vmadivsumlem  21217  selberg4lem1  21237
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-rep 4307  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687  ax-inf2 7580  ax-cnex 9030  ax-resscn 9031  ax-1cn 9032  ax-icn 9033  ax-addcl 9034  ax-addrcl 9035  ax-mulcl 9036  ax-mulrcl 9037  ax-mulcom 9038  ax-addass 9039  ax-mulass 9040  ax-distr 9041  ax-i2m1 9042  ax-1ne0 9043  ax-1rid 9044  ax-rnegex 9045  ax-rrecex 9046  ax-cnre 9047  ax-pre-lttri 9048  ax-pre-lttrn 9049  ax-pre-ltadd 9050  ax-pre-mulgt0 9051  ax-pre-sup 9052  ax-addf 9053  ax-mulf 9054
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-nel 2596  df-ral 2697  df-rex 2698  df-reu 2699  df-rmo 2700  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-pss 3323  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-tp 3809  df-op 3810  df-uni 4003  df-int 4038  df-iun 4082  df-iin 4083  df-br 4200  df-opab 4254  df-mpt 4255  df-tr 4290  df-eprel 4481  df-id 4485  df-po 4490  df-so 4491  df-fr 4528  df-se 4529  df-we 4530  df-ord 4571  df-on 4572  df-lim 4573  df-suc 4574  df-om 4832  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-isom 5449  df-ov 6070  df-oprab 6071  df-mpt2 6072  df-of 6291  df-1st 6335  df-2nd 6336  df-riota 6535  df-recs 6619  df-rdg 6654  df-1o 6710  df-2o 6711  df-oadd 6714  df-er 6891  df-map 7006  df-pm 7007  df-ixp 7050  df-en 7096  df-dom 7097  df-sdom 7098  df-fin 7099  df-fi 7402  df-sup 7432  df-oi 7463  df-card 7810  df-cda 8032  df-pnf 9106  df-mnf 9107  df-xr 9108  df-ltxr 9109  df-le 9110  df-sub 9277  df-neg 9278  df-div 9662  df-nn 9985  df-2 10042  df-3 10043  df-4 10044  df-5 10045  df-6 10046  df-7 10047  df-8 10048  df-9 10049  df-10 10050  df-n0 10206  df-z 10267  df-dec 10367  df-uz 10473  df-q 10559  df-rp 10597  df-xneg 10694  df-xadd 10695  df-xmul 10696  df-ioo 10904  df-ioc 10905  df-ico 10906  df-icc 10907  df-fz 11028  df-fzo 11119  df-fl 11185  df-mod 11234  df-seq 11307  df-exp 11366  df-fac 11550  df-bc 11577  df-hash 11602  df-shft 11865  df-cj 11887  df-re 11888  df-im 11889  df-sqr 12023  df-abs 12024  df-limsup 12248  df-clim 12265  df-rlim 12266  df-o1 12267  df-lo1 12268  df-sum 12463  df-ef 12653  df-e 12654  df-sin 12655  df-cos 12656  df-pi 12658  df-dvds 12836  df-gcd 12990  df-prm 13063  df-pc 13194  df-struct 13454  df-ndx 13455  df-slot 13456  df-base 13457  df-sets 13458  df-ress 13459  df-plusg 13525  df-mulr 13526  df-starv 13527  df-sca 13528  df-vsca 13529  df-tset 13531  df-ple 13532  df-ds 13534  df-unif 13535  df-hom 13536  df-cco 13537  df-rest 13633  df-topn 13634  df-topgen 13650  df-pt 13651  df-prds 13654  df-xrs 13709  df-0g 13710  df-gsum 13711  df-qtop 13716  df-imas 13717  df-xps 13719  df-mre 13794  df-mrc 13795  df-acs 13797  df-mnd 14673  df-submnd 14722  df-mulg 14798  df-cntz 15099  df-cmn 15397  df-psmet 16677  df-xmet 16678  df-met 16679  df-bl 16680  df-mopn 16681  df-fbas 16682  df-fg 16683  df-cnfld 16687  df-top 16946  df-bases 16948  df-topon 16949  df-topsp 16950  df-cld 17066  df-ntr 17067  df-cls 17068  df-nei 17145  df-lp 17183  df-perf 17184  df-cn 17274  df-cnp 17275  df-haus 17362  df-cmp 17433  df-tx 17577  df-hmeo 17770  df-fil 17861  df-fm 17953  df-flim 17954  df-flf 17955  df-xms 18333  df-ms 18334  df-tms 18335  df-cncf 18891  df-limc 19736  df-dv 19737  df-log 20437  df-cxp 20438  df-em 20814  df-cht 20862  df-vma 20863  df-chp 20864  df-ppi 20865
  Copyright terms: Public domain W3C validator