MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmalogdivsum2 Unicode version

Theorem vmalogdivsum2 20649
Description: The sum  sum_ n  <_  x , Λ ( n ) log ( x  /  n )  /  n is asymptotic to  log ^ 2 ( x )  / 
2  +  O ( log x ). Exercise 9.1.7 of [Shapiro], p. 336. (Contributed by Mario Carneiro, 30-May-2016.)
Assertion
Ref Expression
vmalogdivsum2  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O ( 1 )
Distinct variable group:    x, n

Proof of Theorem vmalogdivsum2
StepHypRef Expression
1 fzfid 11001 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
2 elfznn 10785 . . . . . . . . . . . . 13  |-  ( k  e.  ( 1 ... ( |_ `  x
) )  ->  k  e.  NN )
32adantl 454 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  e.  NN )
43nnrpd 10356 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  e.  RR+ )
54relogcld 19936 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  k )  e.  RR )
65, 3nndivred 9762 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  k )  / 
k )  e.  RR )
71, 6fsumrecl 12172 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  e.  RR )
87recnd 8829 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  e.  CC )
9 elioore 10652 . . . . . . . . . . . . 13  |-  ( x  e.  ( 1 (,) 
+oo )  ->  x  e.  RR )
109adantl 454 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  x  e.  RR )
11 1rp 10325 . . . . . . . . . . . . 13  |-  1  e.  RR+
1211a1i 12 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  e.  RR+ )
1312rpred 10357 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  e.  RR )
14 eliooord 10676 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 1 (,) 
+oo )  ->  (
1  <  x  /\  x  <  +oo ) )
1514adantl 454 . . . . . . . . . . . . . 14  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
1  <  x  /\  x  <  +oo ) )
1615simpld 447 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  <  x )
1713, 10, 16ltled 8935 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  <_  x )
1810, 12, 17rpgecld 10392 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  x  e.  RR+ )
1918relogcld 19936 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  e.  RR )
2019resqcld 11237 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( log `  x
) ^ 2 )  e.  RR )
2120rehalfcld 9925 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( log `  x
) ^ 2 )  /  2 )  e.  RR )
2221recnd 8829 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( log `  x
) ^ 2 )  /  2 )  e.  CC )
2319recnd 8829 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  e.  CC )
2410, 16rplogcld 19942 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  e.  RR+ )
2524rpne0d 10362 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  =/=  0 )
268, 22, 23, 25divsubdird 9543 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  / 
( log `  x
) )  =  ( ( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( ( ( log `  x ) ^ 2 )  /  2 )  /  ( log `  x
) ) ) )
277, 21resubcld 9179 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  e.  RR )
2827recnd 8829 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  e.  CC )
2928, 23, 25divrecd 9507 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  / 
( log `  x
) )  =  ( ( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  x.  ( 1  /  ( log `  x ) ) ) )
3020recnd 8829 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( log `  x
) ^ 2 )  e.  CC )
31 2cn 9784 . . . . . . . . . 10  |-  2  e.  CC
3231a1i 12 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  2  e.  CC )
33 2ne0 9797 . . . . . . . . . 10  |-  2  =/=  0
3433a1i 12 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  2  =/=  0 )
3530, 32, 23, 34, 25divdiv32d 9529 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( log `  x ) ^ 2 )  /  2 )  /  ( log `  x
) )  =  ( ( ( ( log `  x ) ^ 2 )  /  ( log `  x ) )  / 
2 ) )
3623sqvald 11208 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( log `  x
) ^ 2 )  =  ( ( log `  x )  x.  ( log `  x ) ) )
3736oveq1d 5807 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( log `  x
) ^ 2 )  /  ( log `  x
) )  =  ( ( ( log `  x
)  x.  ( log `  x ) )  / 
( log `  x
) ) )
3823, 23, 25divcan3d 9509 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( log `  x
)  x.  ( log `  x ) )  / 
( log `  x
) )  =  ( log `  x ) )
3937, 38eqtrd 2290 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( log `  x
) ^ 2 )  /  ( log `  x
) )  =  ( log `  x ) )
4039oveq1d 5807 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( log `  x ) ^ 2 )  /  ( log `  x ) )  / 
2 )  =  ( ( log `  x
)  /  2 ) )
4135, 40eqtrd 2290 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( log `  x ) ^ 2 )  /  2 )  /  ( log `  x
) )  =  ( ( log `  x
)  /  2 ) )
4241oveq2d 5808 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( ( ( log `  x ) ^ 2 )  /  2 )  /  ( log `  x
) ) )  =  ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) ) )
4326, 29, 423eqtr3rd 2299 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) )  =  ( (
sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  x.  ( 1  /  ( log `  x ) ) ) )
4443mpteq2dva 4080 . . . 4  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) ) )  =  ( x  e.  ( 1 (,)  +oo )  |->  ( (
sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  x.  ( 1  /  ( log `  x ) ) ) ) )
4524rprecred 10368 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
1  /  ( log `  x ) )  e.  RR )
4618ex 425 . . . . . . 7  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  ->  x  e.  RR+ )
)
4746ssrdv 3160 . . . . . 6  |-  (  T. 
->  ( 1 (,)  +oo )  C_  RR+ )
48 eqid 2258 . . . . . . . . 9  |-  ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  =  ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )
4948logdivsum 20644 . . . . . . . 8  |-  ( ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) ) : RR+ --> RR  /\  (
x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  e.  dom  ~~> r  /\  ( ( ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  ~~> r  1  /\  1  e.  RR+  /\  _e  <_  1 )  ->  ( abs `  ( ( ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) ) `
 1 )  - 
1 ) )  <_ 
( ( log `  1
)  /  1 ) ) )
5049simp2i 970 . . . . . . 7  |-  ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  e.  dom  ~~> r
51 rlimdmo1 12056 . . . . . . 7  |-  ( ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  e.  dom  ~~> r  -> 
( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  e.  O ( 1 ) )
5250, 51mp1i 13 . . . . . 6  |-  (  T. 
->  ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  e.  O ( 1 ) )
5347, 52o1res2 12002 . . . . 5  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) ) )  e.  O ( 1 ) )
54 divlogrlim 19944 . . . . . 6  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( 1  /  ( log `  x
) ) )  ~~> r  0
55 rlimo1 12055 . . . . . 6  |-  ( ( x  e.  ( 1 (,)  +oo )  |->  ( 1  /  ( log `  x
) ) )  ~~> r  0  ->  ( x  e.  ( 1 (,)  +oo )  |->  ( 1  / 
( log `  x
) ) )  e.  O ( 1 ) )
5654, 55mp1i 13 . . . . 5  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( 1  /  ( log `  x ) ) )  e.  O ( 1 ) )
5727, 45, 53, 56o1mul2 12063 . . . 4  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  ( ( ( log `  x ) ^ 2 )  / 
2 ) )  x.  ( 1  /  ( log `  x ) ) ) )  e.  O
( 1 ) )
5844, 57eqeltrd 2332 . . 3  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) ) )  e.  O
( 1 ) )
598, 23, 25divcld 9504 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  e.  CC )
6023halfcld 9923 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( log `  x
)  /  2 )  e.  CC )
6159, 60subcld 9125 . . . 4  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) )  e.  CC )
62 elfznn 10785 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
6362adantl 454 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
64 vmacl 20318 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
6563, 64syl 17 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
6665, 63nndivred 9762 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  RR )
6718adantr 453 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
6863nnrpd 10356 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
6967, 68rpdivcld 10374 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
7069relogcld 19936 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  e.  RR )
7166, 70remulcld 8831 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) )  e.  RR )
721, 71fsumrecl 12172 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  e.  RR )
7372recnd 8829 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  e.  CC )
7424rpcnd 10359 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  e.  CC )
7573, 74, 25divcld 9504 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  e.  CC )
7674halfcld 9923 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( log `  x
)  /  2 )  e.  CC )
7775, 76subcld 9125 . . . 4  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) )  e.  CC )
7859, 75, 60nnncan2d 9160 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) )  -  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  =  ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) ) ) )
798, 73, 23, 25divsubdird 9543 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) )  / 
( log `  x
) )  =  ( ( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) ) ) )
80 fzfid 11001 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( x  /  n
) ) )  e. 
Fin )
8165adantr 453 . . . . . . . . . . . . 13  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  (Λ `  n
)  e.  RR )
8263adantr 453 . . . . . . . . . . . . . 14  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  n  e.  NN )
83 elfznn 10785 . . . . . . . . . . . . . . 15  |-  ( m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) )  ->  m  e.  NN )
8483adantl 454 . . . . . . . . . . . . . 14  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  m  e.  NN )
8582, 84nnmulcld 9761 . . . . . . . . . . . . 13  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( n  x.  m )  e.  NN )
8681, 85nndivred 9762 . . . . . . . . . . . 12  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  n )  /  (
n  x.  m ) )  e.  RR )
8780, 86fsumrecl 12172 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) )  e.  RR )
8887recnd 8829 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) )  e.  CC )
8971recnd 8829 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) )  e.  CC )
901, 88, 89fsumsub 12215 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) )  -  ( ( (Λ `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  n )  /  ( n  x.  m ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )
9165recnd 8829 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  CC )
9263nncnd 9730 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
9363nnne0d 9758 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  =/=  0 )
9491, 92, 93divcld 9504 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  CC )
9584nnrecred 9759 . . . . . . . . . . . . . 14  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( 1  /  m )  e.  RR )
9680, 95fsumrecl 12172 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  e.  RR )
9796recnd 8829 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  e.  CC )
9870recnd 8829 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  e.  CC )
9994, 97, 98subdid 9203 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  -  ( log `  (
x  /  n ) ) ) )  =  ( ( ( (Λ `  n )  /  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) )  -  (
( (Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) ) ) )
10091adantr 453 . . . . . . . . . . . . . . . 16  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  (Λ `  n
)  e.  CC )
10192adantr 453 . . . . . . . . . . . . . . . 16  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  n  e.  CC )
10284nncnd 9730 . . . . . . . . . . . . . . . 16  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  m  e.  CC )
10393adantr 453 . . . . . . . . . . . . . . . 16  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  n  =/=  0 )
10484nnne0d 9758 . . . . . . . . . . . . . . . 16  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  m  =/=  0 )
105100, 101, 102, 103, 104divdiv1d 9535 . . . . . . . . . . . . . . 15  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
(Λ `  n )  /  n )  /  m
)  =  ( (Λ `  n )  /  (
n  x.  m ) ) )
106100, 101, 103divcld 9504 . . . . . . . . . . . . . . . 16  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  n )  /  n
)  e.  CC )
107106, 102, 104divrecd 9507 . . . . . . . . . . . . . . 15  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (
(Λ `  n )  /  n )  /  m
)  =  ( ( (Λ `  n )  /  n )  x.  (
1  /  m ) ) )
108105, 107eqtr3d 2292 . . . . . . . . . . . . . 14  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( (Λ `  n )  /  (
n  x.  m ) )  =  ( ( (Λ `  n )  /  n )  x.  (
1  /  m ) ) )
109108sumeq2dv 12141 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( (Λ `  n
)  /  n )  x.  ( 1  /  m ) ) )
110102, 104reccld 9497 . . . . . . . . . . . . . 14  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( 1  /  m )  e.  CC )
11180, 94, 110fsummulc2 12211 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m ) )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( ( (Λ `  n
)  /  n )  x.  ( 1  /  m ) ) )
112109, 111eqtr4d 2293 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) )  =  ( ( (Λ `  n )  /  n
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) ) )
113112oveq1d 5807 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( (Λ `  n )  /  (
n  x.  m ) )  -  ( ( (Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) ) )  =  ( ( ( (Λ `  n
)  /  n )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
) )  -  (
( (Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) ) ) )
11499, 113eqtr4d 2293 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  -  ( log `  (
x  /  n ) ) ) )  =  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) )  -  ( ( (Λ `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )
115114sumeq2dv 12141 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) )  -  ( ( (Λ `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )
116 vmasum 20417 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  sum_ n  e.  { y  e.  NN  |  y  ||  k }  (Λ `  n )  =  ( log `  k
) )
1173, 116syl 17 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ n  e. 
{ y  e.  NN  |  y  ||  k }  (Λ `  n )  =  ( log `  k
) )
118117oveq1d 5807 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ n  e.  { y  e.  NN  |  y  ||  k }  (Λ `  n
)  /  k )  =  ( ( log `  k )  /  k
) )
119 fzfid 11001 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... k )  e. 
Fin )
120 sgmss 20306 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  { y  e.  NN  |  y 
||  k }  C_  ( 1 ... k
) )
1213, 120syl 17 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  { y  e.  NN  |  y  ||  k }  C_  ( 1 ... k ) )
122 ssfi 7051 . . . . . . . . . . . . . . 15  |-  ( ( ( 1 ... k
)  e.  Fin  /\  { y  e.  NN  | 
y  ||  k }  C_  ( 1 ... k
) )  ->  { y  e.  NN  |  y 
||  k }  e.  Fin )
123119, 121, 122syl2anc 645 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  { y  e.  NN  |  y  ||  k }  e.  Fin )
1243nncnd 9730 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  e.  CC )
125 ssrab2 3233 . . . . . . . . . . . . . . . . . 18  |-  { y  e.  NN  |  y 
||  k }  C_  NN
126 simprr 736 . . . . . . . . . . . . . . . . . 18  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  ->  n  e.  { y  e.  NN  |  y  ||  k } )
127125, 126sseldi 3153 . . . . . . . . . . . . . . . . 17  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  ->  n  e.  NN )
128127, 64syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  -> 
(Λ `  n )  e.  RR )
129128recnd 8829 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  -> 
(Λ `  n )  e.  CC )
130129anassrs 632 . . . . . . . . . . . . . 14  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
)  ->  (Λ `  n
)  e.  CC )
1313nnne0d 9758 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  =/=  0 )
132123, 124, 130, 131fsumdivc 12213 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ n  e.  { y  e.  NN  |  y  ||  k }  (Λ `  n
)  /  k )  =  sum_ n  e.  {
y  e.  NN  | 
y  ||  k } 
( (Λ `  n )  /  k ) )
133118, 132eqtr3d 2292 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  k )  / 
k )  =  sum_ n  e.  { y  e.  NN  |  y  ||  k }  ( (Λ `  n )  /  k
) )
134133sumeq2dv 12141 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  =  sum_ k  e.  ( 1 ... ( |_
`  x ) )
sum_ n  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  n )  / 
k ) )
135 oveq2 5800 . . . . . . . . . . . 12  |-  ( k  =  ( n  x.  m )  ->  (
(Λ `  n )  / 
k )  =  ( (Λ `  n )  /  ( n  x.  m ) ) )
1362ad2antrl 711 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  -> 
k  e.  NN )
137136nncnd 9730 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  -> 
k  e.  CC )
138136nnne0d 9758 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  -> 
k  =/=  0 )
139129, 137, 138divcld 9504 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } ) )  -> 
( (Λ `  n )  /  k )  e.  CC )
140135, 10, 139dvdsflsumcom 20390 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) )
sum_ n  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  n )  / 
k )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( (Λ `  n
)  /  ( n  x.  m ) ) )
141134, 140eqtrd 2290 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  n )  /  ( n  x.  m ) ) )
142141oveq1d 5807 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( (Λ `  n )  /  ( n  x.  m ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )
14390, 115, 1423eqtr4rd 2301 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) ) )
144143oveq1d 5807 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  k
)  /  k )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) )  / 
( log `  x
) )  =  (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) )
14578, 79, 1443eqtr2d 2296 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) )  -  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) )
146145mpteq2dva 4080 . . . . 5  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) )  -  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) ) )  =  ( x  e.  ( 1 (,)  +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) ) )
147 1re 8805 . . . . . . . 8  |-  1  e.  RR
148147a1i 12 . . . . . . 7  |-  (  T. 
->  1  e.  RR )
1491, 66fsumrecl 12172 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  e.  RR )
150149, 24rerpdivcld 10384 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  /  ( log `  x ) )  e.  RR )
151 ioossre 10678 . . . . . . . . . . 11  |-  ( 1 (,)  +oo )  C_  RR
152 ax-1cn 8763 . . . . . . . . . . 11  |-  1  e.  CC
153 o1const 12058 . . . . . . . . . . 11  |-  ( ( ( 1 (,)  +oo )  C_  RR  /\  1  e.  CC )  ->  (
x  e.  ( 1 (,)  +oo )  |->  1 )  e.  O ( 1 ) )
154151, 152, 153mp2an 656 . . . . . . . . . 10  |-  ( x  e.  ( 1 (,) 
+oo )  |->  1 )  e.  O ( 1 )
155154a1i 12 . . . . . . . . 9  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  1 )  e.  O
( 1 ) )
156150recnd 8829 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  /  ( log `  x ) )  e.  CC )
15712rpcnd 10359 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  e.  CC )
158149recnd 8829 . . . . . . . . . . . . . 14  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  e.  CC )
159158, 23, 23, 25divsubdird 9543 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  /  ( log `  x ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  /  ( log `  x ) )  -  ( ( log `  x
)  /  ( log `  x ) ) ) )
160158, 23subcld 9125 . . . . . . . . . . . . . 14  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  ( log `  x ) )  e.  CC )
161160, 23, 25divrecd 9507 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  /  ( log `  x ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( log `  x ) )  x.  ( 1  /  ( log `  x ) ) ) )
16223, 25dividd 9502 . . . . . . . . . . . . . 14  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( log `  x
)  /  ( log `  x ) )  =  1 )
163162oveq2d 5808 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  -  (
( log `  x
)  /  ( log `  x ) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  /  ( log `  x ) )  - 
1 ) )
164159, 161, 1633eqtr3rd 2299 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  -  1 )  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  ( log `  x ) )  x.  ( 1  / 
( log `  x
) ) ) )
165164mpteq2dva 4080 . . . . . . . . . . 11  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  -  1 ) )  =  ( x  e.  ( 1 (,)  +oo )  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  ( log `  x ) )  x.  ( 1  / 
( log `  x
) ) ) ) )
166149, 19resubcld 9179 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  -  ( log `  x ) )  e.  RR )
167 vmadivsum 20593 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  /  n
)  -  ( log `  x ) ) )  e.  O ( 1 )
168167a1i 12 . . . . . . . . . . . . 13  |-  (  T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) ) )  e.  O ( 1 ) )
16947, 168o1res2 12002 . . . . . . . . . . . 12  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) ) )  e.  O ( 1 ) )
170166, 45, 169, 56o1mul2 12063 . . . . . . . . . . 11  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  -  ( log `  x
) )  x.  (
1  /  ( log `  x ) ) ) )  e.  O ( 1 ) )
171165, 170eqeltrd 2332 . . . . . . . . . 10  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) )  -  1 ) )  e.  O
( 1 ) )
172156, 157, 171o1dif 12068 . . . . . . . . 9  |-  (  T. 
->  ( ( x  e.  ( 1 (,)  +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) ) )  e.  O ( 1 )  <-> 
( x  e.  ( 1 (,)  +oo )  |->  1 )  e.  O
( 1 ) ) )
173155, 172mpbird 225 . . . . . . . 8  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) ) )  e.  O ( 1 ) )
174150, 173o1lo1d 11978 . . . . . . 7  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n )  /  ( log `  x
) ) )  e. 
<_ O ( 1 ) )
17596, 70resubcld 9179 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) )  e.  RR )
17666, 175remulcld 8831 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  -  ( log `  (
x  /  n ) ) ) )  e.  RR )
1771, 176fsumrecl 12172 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  e.  RR )
178177, 24rerpdivcld 10384 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) )  e.  RR )
179147a1i 12 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
180 vmage0 20321 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  0  <_  (Λ `  n )
)
18163, 180syl 17 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  (Λ `  n ) )
18265, 68, 181divge0d 10393 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( (Λ `  n )  /  n ) )
18369rpred 10357 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
18492mulid2d 8821 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  n )  =  n )
185 fznnfl 10932 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  RR  ->  (
n  e.  ( 1 ... ( |_ `  x ) )  <->  ( n  e.  NN  /\  n  <_  x ) ) )
18610, 185syl 17 . . . . . . . . . . . . . . . . 17  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
n  e.  ( 1 ... ( |_ `  x ) )  <->  ( n  e.  NN  /\  n  <_  x ) ) )
187186simplbda 610 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  <_  x )
188184, 187eqbrtrd 4017 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  n )  <_  x )
18910adantr 453 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
190179, 189, 68lemuldivd 10402 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
1  x.  n )  <_  x  <->  1  <_  ( x  /  n ) ) )
191188, 190mpbid 203 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  ( x  /  n ) )
192 harmonicubnd 20265 . . . . . . . . . . . . . 14  |-  ( ( ( x  /  n
)  e.  RR  /\  1  <_  ( x  /  n ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  <_  ( ( log `  ( x  /  n
) )  +  1 ) )
193183, 191, 192syl2anc 645 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  <_  ( ( log `  ( x  /  n ) )  +  1 ) )
19496, 70, 179lesubadd2d 9339 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  -  ( log `  (
x  /  n ) ) )  <_  1  <->  sum_
m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  <_  ( ( log `  ( x  /  n
) )  +  1 ) ) )
195193, 194mpbird 225 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) )  <_  1 )
196175, 179, 66, 182, 195lemul2ad 9665 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  -  ( log `  (
x  /  n ) ) ) )  <_ 
( ( (Λ `  n
)  /  n )  x.  1 ) )
19794mulid1d 8820 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  1 )  =  ( (Λ `  n )  /  n
) )
198196, 197breqtrd 4021 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  -  ( log `  (
x  /  n ) ) ) )  <_ 
( (Λ `  n )  /  n ) )
1991, 176, 66, 198fsumle 12222 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  /  n ) )
200177, 149, 24, 199lediv1dd 10411 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  /  ( log `  x ) ) )
201200adantrr 700 . . . . . . 7  |-  ( (  T.  /\  ( x  e.  ( 1 (,) 
+oo )  /\  1  <_  x ) )  -> 
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  /  n )  /  ( log `  x ) ) )
202148, 174, 150, 178, 201lo1le 12090 . . . . . 6  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) )  e. 
<_ O ( 1 ) )
203 0re 8806 . . . . . . . 8  |-  0  e.  RR
204203a1i 12 . . . . . . 7  |-  (  T. 
->  0  e.  RR )
205 harmoniclbnd 20264 . . . . . . . . . . . 12  |-  ( ( x  /  n )  e.  RR+  ->  ( log `  ( x  /  n
) )  <_  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) )
20669, 205syl 17 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  <_  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) )
20796, 70subge0d 9330 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 0  <_  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) )  <->  ( log `  ( x  /  n
) )  <_  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
) ) )
208206, 207mpbird 225 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  (
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  -  ( log `  (
x  /  n ) ) ) )
20966, 175, 182, 208mulge0d 9317 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) ) )
2101, 176, 209fsumge0 12218 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  0  <_ 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) ) )
211177, 24, 210divge0d 10393 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  0  <_  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) )
212178, 204, 211o1lo12 11977 . . . . . 6  |-  (  T. 
->  ( ( x  e.  ( 1 (,)  +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) )  e.  O ( 1 )  <-> 
( x  e.  ( 1 (,)  +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) )  e. 
<_ O ( 1 ) ) )
213202, 212mpbird 225 . . . . 5  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  /  ( log `  x
) ) )  e.  O ( 1 ) )
214146, 213eqeltrd 2332 . . . 4  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) )  -  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) ) )  e.  O ( 1 ) )
21561, 77, 214o1dif 12068 . . 3  |-  (  T. 
->  ( ( x  e.  ( 1 (,)  +oo )  |->  ( ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  k
)  /  k )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) ) )  e.  O
( 1 )  <->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  /  n )  x.  ( log `  ( x  /  n ) ) )  /  ( log `  x
) )  -  (
( log `  x
)  /  2 ) ) )  e.  O
( 1 ) ) )
21658, 215mpbid 203 . 2  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O ( 1 ) )
217216trud 1320 1  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  /  ( log `  x ) )  -  ( ( log `  x )  /  2
) ) )  e.  O ( 1 )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    T. wtru 1312    = wceq 1619    e. wcel 1621    =/= wne 2421   {crab 2522    C_ wss 3127   class class class wbr 3997    e. cmpt 4051   dom cdm 4661   -->wf 4669   ` cfv 4673  (class class class)co 5792   Fincfn 6831   CCcc 8703   RRcr 8704   0cc0 8705   1c1 8706    + caddc 8708    x. cmul 8710    +oocpnf 8832    < clt 8835    <_ cle 8836    - cmin 9005    / cdiv 9391   NNcn 9714   2c2 9763   RR+crp 10321   (,)cioo 10622   ...cfz 10748   |_cfl 10890   ^cexp 11070   abscabs 11684    ~~> r crli 11924   O ( 1 )co1 11925   <_ O ( 1 )clo1 11926   sum_csu 12123   _eceu 12306    || cdivides 12493   logclog 19874  Λcvma 20291
This theorem is referenced by:  vmalogdivsum  20650  2vmadivsumlem  20651  selberg4lem1  20671
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783  ax-addf 8784  ax-mulf 8785
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-of 6012  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-2o 6448  df-oadd 6451  df-er 6628  df-map 6742  df-pm 6743  df-ixp 6786  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-fi 7133  df-sup 7162  df-oi 7193  df-card 7540  df-cda 7762  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-4 9774  df-5 9775  df-6 9776  df-7 9777  df-8 9778  df-9 9779  df-10 9780  df-n0 9933  df-z 9992  df-dec 10092  df-uz 10198  df-q 10284  df-rp 10322  df-xneg 10419  df-xadd 10420  df-xmul 10421  df-ioo 10626  df-ioc 10627  df-ico 10628  df-icc 10629  df-fz 10749  df-fzo 10837  df-fl 10891  df-mod 10940  df-seq 11013  df-exp 11071  df-fac 11255  df-bc 11282  df-hash 11304  df-shft 11527  df-cj 11549  df-re 11550  df-im 11551  df-sqr 11685  df-abs 11686  df-limsup 11910  df-clim 11927  df-rlim 11928  df-o1 11929  df-lo1 11930  df-sum 12124  df-ef 12311  df-e 12312  df-sin 12313  df-cos 12314  df-pi 12316  df-divides 12494  df-gcd 12648  df-prime 12721  df-pc 12852  df-struct 13112  df-ndx 13113  df-slot 13114  df-base 13115  df-sets 13116  df-ress 13117  df-plusg 13183  df-mulr 13184  df-starv 13185  df-sca 13186  df-vsca 13187  df-tset 13189  df-ple 13190  df-ds 13192  df-hom 13194  df-cco 13195  df-rest 13289  df-topn 13290  df-topgen 13306  df-pt 13307  df-prds 13310  df-xrs 13365  df-0g 13366  df-gsum 13367  df-qtop 13372  df-imas 13373  df-xps 13375  df-mre 13450  df-mrc 13451  df-acs 13453  df-mnd 14329  df-submnd 14378  df-mulg 14454  df-cntz 14755  df-cmn 15053  df-xmet 16335  df-met 16336  df-bl 16337  df-mopn 16338  df-cnfld 16340  df-top 16598  df-bases 16600  df-topon 16601  df-topsp 16602  df-cld 16718  df-ntr 16719  df-cls 16720  df-nei 16797  df-lp 16830  df-perf 16831  df-cn 16919  df-cnp 16920  df-haus 17005  df-cmp 17076  df-tx 17219  df-hmeo 17408  df-fbas 17482  df-fg 17483  df-fil 17503  df-fm 17595  df-flim 17596  df-flf 17597  df-xms 17847  df-ms 17848  df-tms 17849  df-cncf 18344  df-limc 19178  df-dv 19179  df-log 19876  df-cxp 19877  df-em 20249  df-cht 20296  df-vma 20297  df-chp 20298  df-ppi 20299
  Copyright terms: Public domain W3C validator