MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmasum Unicode version

Theorem vmasum 20867
Description: The sum of the von Mangoldt function over the divisors of  n. Equation 9.2.4 of [Shapiro], p. 328. (Contributed by Mario Carneiro, 15-Apr-2016.)
Assertion
Ref Expression
vmasum  |-  ( A  e.  NN  ->  sum_ n  e.  { x  e.  NN  |  x  ||  A } 
(Λ `  n )  =  ( log `  A
) )
Distinct variable group:    x, n, A

Proof of Theorem vmasum
Dummy variables  k  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5668 . . 3  |-  ( n  =  ( p ^
k )  ->  (Λ `  n )  =  (Λ `  ( p ^ k
) ) )
2 fzfid 11239 . . . 4  |-  ( A  e.  NN  ->  (
1 ... A )  e. 
Fin )
3 sgmss 20756 . . . 4  |-  ( A  e.  NN  ->  { x  e.  NN  |  x  ||  A }  C_  ( 1 ... A ) )
4 ssfi 7265 . . . 4  |-  ( ( ( 1 ... A
)  e.  Fin  /\  { x  e.  NN  |  x  ||  A }  C_  ( 1 ... A
) )  ->  { x  e.  NN  |  x  ||  A }  e.  Fin )
52, 3, 4syl2anc 643 . . 3  |-  ( A  e.  NN  ->  { x  e.  NN  |  x  ||  A }  e.  Fin )
6 ssrab2 3371 . . . 4  |-  { x  e.  NN  |  x  ||  A }  C_  NN
76a1i 11 . . 3  |-  ( A  e.  NN  ->  { x  e.  NN  |  x  ||  A }  C_  NN )
8 inss1 3504 . . . 4  |-  ( ( 1 ... A )  i^i  Prime )  C_  (
1 ... A )
9 ssfi 7265 . . . 4  |-  ( ( ( 1 ... A
)  e.  Fin  /\  ( ( 1 ... A )  i^i  Prime ) 
C_  ( 1 ... A ) )  -> 
( ( 1 ... A )  i^i  Prime )  e.  Fin )
102, 8, 9sylancl 644 . . 3  |-  ( A  e.  NN  ->  (
( 1 ... A
)  i^i  Prime )  e. 
Fin )
11 pccl 13150 . . . . . . . . . 10  |-  ( ( p  e.  Prime  /\  A  e.  NN )  ->  (
p  pCnt  A )  e.  NN0 )
1211ancoms 440 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( p  pCnt  A
)  e.  NN0 )
1312nn0zd 10305 . . . . . . . 8  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( p  pCnt  A
)  e.  ZZ )
14 fznn 11045 . . . . . . . 8  |-  ( ( p  pCnt  A )  e.  ZZ  ->  ( k  e.  ( 1 ... (
p  pCnt  A )
)  <->  ( k  e.  NN  /\  k  <_ 
( p  pCnt  A
) ) ) )
1513, 14syl 16 . . . . . . 7  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( k  e.  ( 1 ... ( p 
pCnt  A ) )  <->  ( k  e.  NN  /\  k  <_ 
( p  pCnt  A
) ) ) )
1615anbi2d 685 . . . . . 6  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( ( p  e.  ( 1 ... A
)  /\  k  e.  ( 1 ... (
p  pCnt  A )
) )  <->  ( p  e.  ( 1 ... A
)  /\  ( k  e.  NN  /\  k  <_ 
( p  pCnt  A
) ) ) ) )
17 an12 773 . . . . . . 7  |-  ( ( p  e.  ( 1 ... A )  /\  ( k  e.  NN  /\  k  <_  ( p  pCnt  A ) ) )  <-> 
( k  e.  NN  /\  ( p  e.  ( 1 ... A )  /\  k  <_  (
p  pCnt  A )
) ) )
18 prmz 13010 . . . . . . . . . . . . . . 15  |-  ( p  e.  Prime  ->  p  e.  ZZ )
1918adantl 453 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  p  e.  Prime )  ->  p  e.  ZZ )
20 iddvdsexp 12800 . . . . . . . . . . . . . 14  |-  ( ( p  e.  ZZ  /\  k  e.  NN )  ->  p  ||  ( p ^ k ) )
2119, 20sylan 458 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  p  ||  (
p ^ k ) )
2218ad2antlr 708 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  p  e.  ZZ )
23 prmnn 13009 . . . . . . . . . . . . . . . . 17  |-  ( p  e.  Prime  ->  p  e.  NN )
2423adantl 453 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  NN  /\  p  e.  Prime )  ->  p  e.  NN )
25 nnnn0 10160 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  k  e.  NN0 )
26 nnexpcl 11321 . . . . . . . . . . . . . . . 16  |-  ( ( p  e.  NN  /\  k  e.  NN0 )  -> 
( p ^ k
)  e.  NN )
2724, 25, 26syl2an 464 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( p ^
k )  e.  NN )
2827nnzd 10306 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( p ^
k )  e.  ZZ )
29 nnz 10235 . . . . . . . . . . . . . . 15  |-  ( A  e.  NN  ->  A  e.  ZZ )
3029ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  A  e.  ZZ )
31 dvdstr 12810 . . . . . . . . . . . . . 14  |-  ( ( p  e.  ZZ  /\  ( p ^ k
)  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( p  ||  ( p ^ k
)  /\  ( p ^ k )  ||  A )  ->  p  ||  A ) )
3222, 28, 30, 31syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p 
||  ( p ^
k )  /\  (
p ^ k ) 
||  A )  ->  p  ||  A ) )
3321, 32mpand 657 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p ^ k )  ||  A  ->  p  ||  A
) )
34 simpll 731 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  A  e.  NN )
35 dvdsle 12822 . . . . . . . . . . . . 13  |-  ( ( p  e.  ZZ  /\  A  e.  NN )  ->  ( p  ||  A  ->  p  <_  A )
)
3622, 34, 35syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( p  ||  A  ->  p  <_  A
) )
3733, 36syld 42 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p ^ k )  ||  A  ->  p  <_  A
) )
3823ad2antlr 708 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  p  e.  NN )
39 fznn 11045 . . . . . . . . . . . . 13  |-  ( A  e.  ZZ  ->  (
p  e.  ( 1 ... A )  <->  ( p  e.  NN  /\  p  <_  A ) ) )
4039baibd 876 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  NN )  ->  ( p  e.  ( 1 ... A )  <-> 
p  <_  A )
)
4130, 38, 40syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( p  e.  ( 1 ... A
)  <->  p  <_  A ) )
4237, 41sylibrd 226 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p ^ k )  ||  A  ->  p  e.  ( 1 ... A ) ) )
4342pm4.71rd 617 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p ^ k )  ||  A 
<->  ( p  e.  ( 1 ... A )  /\  ( p ^
k )  ||  A
) ) )
44 breq1 4156 . . . . . . . . . . 11  |-  ( x  =  ( p ^
k )  ->  (
x  ||  A  <->  ( p ^ k )  ||  A ) )
4544elrab3 3036 . . . . . . . . . 10  |-  ( ( p ^ k )  e.  NN  ->  (
( p ^ k
)  e.  { x  e.  NN  |  x  ||  A }  <->  ( p ^
k )  ||  A
) )
4627, 45syl 16 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p ^ k )  e. 
{ x  e.  NN  |  x  ||  A }  <->  ( p ^ k ) 
||  A ) )
47 simplr 732 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  p  e.  Prime )
4825adantl 453 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  k  e.  NN0 )
49 pcdvdsb 13169 . . . . . . . . . . 11  |-  ( ( p  e.  Prime  /\  A  e.  ZZ  /\  k  e. 
NN0 )  ->  (
k  <_  ( p  pCnt  A )  <->  ( p ^ k )  ||  A ) )
5047, 30, 48, 49syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( k  <_ 
( p  pCnt  A
)  <->  ( p ^
k )  ||  A
) )
5150anbi2d 685 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p  e.  ( 1 ... A )  /\  k  <_  ( p  pCnt  A
) )  <->  ( p  e.  ( 1 ... A
)  /\  ( p ^ k )  ||  A ) ) )
5243, 46, 513bitr4rd 278 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p  e.  ( 1 ... A )  /\  k  <_  ( p  pCnt  A
) )  <->  ( p ^ k )  e. 
{ x  e.  NN  |  x  ||  A }
) )
5352pm5.32da 623 . . . . . . 7  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( ( k  e.  NN  /\  ( p  e.  ( 1 ... A )  /\  k  <_  ( p  pCnt  A
) ) )  <->  ( k  e.  NN  /\  ( p ^ k )  e. 
{ x  e.  NN  |  x  ||  A }
) ) )
5417, 53syl5bb 249 . . . . . 6  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( ( p  e.  ( 1 ... A
)  /\  ( k  e.  NN  /\  k  <_ 
( p  pCnt  A
) ) )  <->  ( k  e.  NN  /\  ( p ^ k )  e. 
{ x  e.  NN  |  x  ||  A }
) ) )
5516, 54bitrd 245 . . . . 5  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( ( p  e.  ( 1 ... A
)  /\  k  e.  ( 1 ... (
p  pCnt  A )
) )  <->  ( k  e.  NN  /\  ( p ^ k )  e. 
{ x  e.  NN  |  x  ||  A }
) ) )
5655pm5.32da 623 . . . 4  |-  ( A  e.  NN  ->  (
( p  e.  Prime  /\  ( p  e.  ( 1 ... A )  /\  k  e.  ( 1 ... ( p 
pCnt  A ) ) ) )  <->  ( p  e. 
Prime  /\  ( k  e.  NN  /\  ( p ^ k )  e. 
{ x  e.  NN  |  x  ||  A }
) ) ) )
57 elin 3473 . . . . . 6  |-  ( p  e.  ( ( 1 ... A )  i^i 
Prime )  <->  ( p  e.  ( 1 ... A
)  /\  p  e.  Prime ) )
5857anbi1i 677 . . . . 5  |-  ( ( p  e.  ( ( 1 ... A )  i^i  Prime )  /\  k  e.  ( 1 ... (
p  pCnt  A )
) )  <->  ( (
p  e.  ( 1 ... A )  /\  p  e.  Prime )  /\  k  e.  ( 1 ... ( p  pCnt  A ) ) ) )
59 anass 631 . . . . 5  |-  ( ( ( p  e.  ( 1 ... A )  /\  p  e.  Prime )  /\  k  e.  ( 1 ... ( p 
pCnt  A ) ) )  <-> 
( p  e.  ( 1 ... A )  /\  ( p  e. 
Prime  /\  k  e.  ( 1 ... ( p 
pCnt  A ) ) ) ) )
60 an12 773 . . . . 5  |-  ( ( p  e.  ( 1 ... A )  /\  ( p  e.  Prime  /\  k  e.  ( 1 ... ( p  pCnt  A ) ) ) )  <-> 
( p  e.  Prime  /\  ( p  e.  ( 1 ... A )  /\  k  e.  ( 1 ... ( p 
pCnt  A ) ) ) ) )
6158, 59, 603bitri 263 . . . 4  |-  ( ( p  e.  ( ( 1 ... A )  i^i  Prime )  /\  k  e.  ( 1 ... (
p  pCnt  A )
) )  <->  ( p  e.  Prime  /\  ( p  e.  ( 1 ... A
)  /\  k  e.  ( 1 ... (
p  pCnt  A )
) ) ) )
62 anass 631 . . . 4  |-  ( ( ( p  e.  Prime  /\  k  e.  NN )  /\  ( p ^
k )  e.  {
x  e.  NN  |  x  ||  A } )  <-> 
( p  e.  Prime  /\  ( k  e.  NN  /\  ( p ^ k
)  e.  { x  e.  NN  |  x  ||  A } ) ) )
6356, 61, 623bitr4g 280 . . 3  |-  ( A  e.  NN  ->  (
( p  e.  ( ( 1 ... A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( p  pCnt  A ) ) )  <->  ( (
p  e.  Prime  /\  k  e.  NN )  /\  (
p ^ k )  e.  { x  e.  NN  |  x  ||  A } ) ) )
647sselda 3291 . . . . 5  |-  ( ( A  e.  NN  /\  n  e.  { x  e.  NN  |  x  ||  A } )  ->  n  e.  NN )
65 vmacl 20768 . . . . 5  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
6664, 65syl 16 . . . 4  |-  ( ( A  e.  NN  /\  n  e.  { x  e.  NN  |  x  ||  A } )  ->  (Λ `  n )  e.  RR )
6766recnd 9047 . . 3  |-  ( ( A  e.  NN  /\  n  e.  { x  e.  NN  |  x  ||  A } )  ->  (Λ `  n )  e.  CC )
68 simprr 734 . . 3  |-  ( ( A  e.  NN  /\  ( n  e.  { x  e.  NN  |  x  ||  A }  /\  (Λ `  n )  =  0 ) )  ->  (Λ `  n )  =  0 )
691, 5, 7, 10, 63, 67, 68fsumvma 20864 . 2  |-  ( A  e.  NN  ->  sum_ n  e.  { x  e.  NN  |  x  ||  A } 
(Λ `  n )  = 
sum_ p  e.  (
( 1 ... A
)  i^i  Prime ) sum_ k  e.  ( 1 ... ( p  pCnt  A ) ) (Λ `  (
p ^ k ) ) )
7057simprbi 451 . . . . . . 7  |-  ( p  e.  ( ( 1 ... A )  i^i 
Prime )  ->  p  e. 
Prime )
7170ad2antlr 708 . . . . . 6  |-  ( ( ( A  e.  NN  /\  p  e.  ( ( 1 ... A )  i^i  Prime ) )  /\  k  e.  ( 1 ... ( p  pCnt  A ) ) )  ->  p  e.  Prime )
72 elfznn 11012 . . . . . . 7  |-  ( k  e.  ( 1 ... ( p  pCnt  A
) )  ->  k  e.  NN )
7372adantl 453 . . . . . 6  |-  ( ( ( A  e.  NN  /\  p  e.  ( ( 1 ... A )  i^i  Prime ) )  /\  k  e.  ( 1 ... ( p  pCnt  A ) ) )  -> 
k  e.  NN )
74 vmappw 20766 . . . . . 6  |-  ( ( p  e.  Prime  /\  k  e.  NN )  ->  (Λ `  ( p ^ k
) )  =  ( log `  p ) )
7571, 73, 74syl2anc 643 . . . . 5  |-  ( ( ( A  e.  NN  /\  p  e.  ( ( 1 ... A )  i^i  Prime ) )  /\  k  e.  ( 1 ... ( p  pCnt  A ) ) )  -> 
(Λ `  ( p ^
k ) )  =  ( log `  p
) )
7675sumeq2dv 12424 . . . 4  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  sum_ k  e.  ( 1 ... (
p  pCnt  A )
) (Λ `  ( p ^ k ) )  =  sum_ k  e.  ( 1 ... ( p 
pCnt  A ) ) ( log `  p ) )
77 fzfid 11239 . . . . 5  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  (
1 ... ( p  pCnt  A ) )  e.  Fin )
7870, 23syl 16 . . . . . . . . 9  |-  ( p  e.  ( ( 1 ... A )  i^i 
Prime )  ->  p  e.  NN )
7978adantl 453 . . . . . . . 8  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  p  e.  NN )
8079nnrpd 10579 . . . . . . 7  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  p  e.  RR+ )
8180relogcld 20385 . . . . . 6  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  ( log `  p )  e.  RR )
8281recnd 9047 . . . . 5  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  ( log `  p )  e.  CC )
83 fsumconst 12500 . . . . 5  |-  ( ( ( 1 ... (
p  pCnt  A )
)  e.  Fin  /\  ( log `  p )  e.  CC )  ->  sum_ k  e.  ( 1 ... ( p  pCnt  A ) ) ( log `  p )  =  ( ( # `  (
1 ... ( p  pCnt  A ) ) )  x.  ( log `  p
) ) )
8477, 82, 83syl2anc 643 . . . 4  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  sum_ k  e.  ( 1 ... (
p  pCnt  A )
) ( log `  p
)  =  ( (
# `  ( 1 ... ( p  pCnt  A
) ) )  x.  ( log `  p
) ) )
8570, 12sylan2 461 . . . . . 6  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  (
p  pCnt  A )  e.  NN0 )
86 hashfz1 11557 . . . . . 6  |-  ( ( p  pCnt  A )  e.  NN0  ->  ( # `  (
1 ... ( p  pCnt  A ) ) )  =  ( p  pCnt  A
) )
8785, 86syl 16 . . . . 5  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  ( # `
 ( 1 ... ( p  pCnt  A
) ) )  =  ( p  pCnt  A
) )
8887oveq1d 6035 . . . 4  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  (
( # `  ( 1 ... ( p  pCnt  A ) ) )  x.  ( log `  p
) )  =  ( ( p  pCnt  A
)  x.  ( log `  p ) ) )
8976, 84, 883eqtrd 2423 . . 3  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  sum_ k  e.  ( 1 ... (
p  pCnt  A )
) (Λ `  ( p ^ k ) )  =  ( ( p 
pCnt  A )  x.  ( log `  p ) ) )
9089sumeq2dv 12424 . 2  |-  ( A  e.  NN  ->  sum_ p  e.  ( ( 1 ... A )  i^i  Prime )
sum_ k  e.  ( 1 ... ( p 
pCnt  A ) ) (Λ `  ( p ^ k
) )  =  sum_ p  e.  ( ( 1 ... A )  i^i 
Prime ) ( ( p 
pCnt  A )  x.  ( log `  p ) ) )
91 pclogsum 20866 . 2  |-  ( A  e.  NN  ->  sum_ p  e.  ( ( 1 ... A )  i^i  Prime ) ( ( p  pCnt  A )  x.  ( log `  p ) )  =  ( log `  A
) )
9269, 90, 913eqtrd 2423 1  |-  ( A  e.  NN  ->  sum_ n  e.  { x  e.  NN  |  x  ||  A } 
(Λ `  n )  =  ( log `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   {crab 2653    i^i cin 3262    C_ wss 3263   class class class wbr 4153   ` cfv 5394  (class class class)co 6020   Fincfn 7045   CCcc 8921   RRcr 8922   0cc0 8923   1c1 8924    x. cmul 8928    <_ cle 9054   NNcn 9932   NN0cn0 10153   ZZcz 10214   ...cfz 10975   ^cexp 11309   #chash 11545   sum_csu 12406    || cdivides 12779   Primecprime 13006    pCnt cpc 13137   logclog 20319  Λcvma 20741
This theorem is referenced by:  logfac2  20868  dchrvmasumlem1  21056  vmalogdivsum2  21099  logsqvma  21103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001  ax-addf 9002  ax-mulf 9003
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-iin 4038  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-of 6244  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-2o 6661  df-oadd 6664  df-er 6841  df-map 6956  df-pm 6957  df-ixp 7000  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-fi 7351  df-sup 7381  df-oi 7412  df-card 7759  df-cda 7981  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-7 9995  df-8 9996  df-9 9997  df-10 9998  df-n0 10154  df-z 10215  df-dec 10315  df-uz 10421  df-q 10507  df-rp 10545  df-xneg 10642  df-xadd 10643  df-xmul 10644  df-ioo 10852  df-ioc 10853  df-ico 10854  df-icc 10855  df-fz 10976  df-fzo 11066  df-fl 11129  df-mod 11178  df-seq 11251  df-exp 11310  df-fac 11494  df-bc 11521  df-hash 11546  df-shft 11809  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-limsup 12192  df-clim 12209  df-rlim 12210  df-sum 12407  df-ef 12597  df-sin 12599  df-cos 12600  df-pi 12602  df-dvds 12780  df-gcd 12934  df-prm 13007  df-pc 13138  df-struct 13398  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-ress 13403  df-plusg 13469  df-mulr 13470  df-starv 13471  df-sca 13472  df-vsca 13473  df-tset 13475  df-ple 13476  df-ds 13478  df-unif 13479  df-hom 13480  df-cco 13481  df-rest 13577  df-topn 13578  df-topgen 13594  df-pt 13595  df-prds 13598  df-xrs 13653  df-0g 13654  df-gsum 13655  df-qtop 13660  df-imas 13661  df-xps 13663  df-mre 13738  df-mrc 13739  df-acs 13741  df-mnd 14617  df-submnd 14666  df-mulg 14742  df-cntz 15043  df-cmn 15341  df-xmet 16619  df-met 16620  df-bl 16621  df-mopn 16622  df-fbas 16623  df-fg 16624  df-cnfld 16627  df-top 16886  df-bases 16888  df-topon 16889  df-topsp 16890  df-cld 17006  df-ntr 17007  df-cls 17008  df-nei 17085  df-lp 17123  df-perf 17124  df-cn 17213  df-cnp 17214  df-haus 17301  df-tx 17515  df-hmeo 17708  df-fil 17799  df-fm 17891  df-flim 17892  df-flf 17893  df-xms 18259  df-ms 18260  df-tms 18261  df-cncf 18779  df-limc 19620  df-dv 19621  df-log 20321  df-vma 20747
  Copyright terms: Public domain W3C validator