MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmasum Unicode version

Theorem vmasum 20471
Description: The sum of the von Mangoldt function over the divisors of  n. Equation 9.2.4 of [Shapiro], p. 328. (Contributed by Mario Carneiro, 15-Apr-2016.)
Assertion
Ref Expression
vmasum  |-  ( A  e.  NN  ->  sum_ n  e.  { x  e.  NN  |  x  ||  A } 
(Λ `  n )  =  ( log `  A
) )
Distinct variable group:    x, n, A

Proof of Theorem vmasum
Dummy variables  k  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5541 . . 3  |-  ( n  =  ( p ^
k )  ->  (Λ `  n )  =  (Λ `  ( p ^ k
) ) )
2 fzfid 11051 . . . 4  |-  ( A  e.  NN  ->  (
1 ... A )  e. 
Fin )
3 sgmss 20360 . . . 4  |-  ( A  e.  NN  ->  { x  e.  NN  |  x  ||  A }  C_  ( 1 ... A ) )
4 ssfi 7099 . . . 4  |-  ( ( ( 1 ... A
)  e.  Fin  /\  { x  e.  NN  |  x  ||  A }  C_  ( 1 ... A
) )  ->  { x  e.  NN  |  x  ||  A }  e.  Fin )
52, 3, 4syl2anc 642 . . 3  |-  ( A  e.  NN  ->  { x  e.  NN  |  x  ||  A }  e.  Fin )
6 ssrab2 3271 . . . 4  |-  { x  e.  NN  |  x  ||  A }  C_  NN
76a1i 10 . . 3  |-  ( A  e.  NN  ->  { x  e.  NN  |  x  ||  A }  C_  NN )
8 inss1 3402 . . . 4  |-  ( ( 1 ... A )  i^i  Prime )  C_  (
1 ... A )
9 ssfi 7099 . . . 4  |-  ( ( ( 1 ... A
)  e.  Fin  /\  ( ( 1 ... A )  i^i  Prime ) 
C_  ( 1 ... A ) )  -> 
( ( 1 ... A )  i^i  Prime )  e.  Fin )
102, 8, 9sylancl 643 . . 3  |-  ( A  e.  NN  ->  (
( 1 ... A
)  i^i  Prime )  e. 
Fin )
11 pccl 12918 . . . . . . . . . 10  |-  ( ( p  e.  Prime  /\  A  e.  NN )  ->  (
p  pCnt  A )  e.  NN0 )
1211ancoms 439 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( p  pCnt  A
)  e.  NN0 )
1312nn0zd 10131 . . . . . . . 8  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( p  pCnt  A
)  e.  ZZ )
14 fznn 10868 . . . . . . . 8  |-  ( ( p  pCnt  A )  e.  ZZ  ->  ( k  e.  ( 1 ... (
p  pCnt  A )
)  <->  ( k  e.  NN  /\  k  <_ 
( p  pCnt  A
) ) ) )
1513, 14syl 15 . . . . . . 7  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( k  e.  ( 1 ... ( p 
pCnt  A ) )  <->  ( k  e.  NN  /\  k  <_ 
( p  pCnt  A
) ) ) )
1615anbi2d 684 . . . . . 6  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( ( p  e.  ( 1 ... A
)  /\  k  e.  ( 1 ... (
p  pCnt  A )
) )  <->  ( p  e.  ( 1 ... A
)  /\  ( k  e.  NN  /\  k  <_ 
( p  pCnt  A
) ) ) ) )
17 an12 772 . . . . . . 7  |-  ( ( p  e.  ( 1 ... A )  /\  ( k  e.  NN  /\  k  <_  ( p  pCnt  A ) ) )  <-> 
( k  e.  NN  /\  ( p  e.  ( 1 ... A )  /\  k  <_  (
p  pCnt  A )
) ) )
18 prmz 12778 . . . . . . . . . . . . . . 15  |-  ( p  e.  Prime  ->  p  e.  ZZ )
1918adantl 452 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  p  e.  Prime )  ->  p  e.  ZZ )
20 iddvdsexp 12568 . . . . . . . . . . . . . 14  |-  ( ( p  e.  ZZ  /\  k  e.  NN )  ->  p  ||  ( p ^ k ) )
2119, 20sylan 457 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  p  ||  (
p ^ k ) )
2218ad2antlr 707 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  p  e.  ZZ )
23 prmnn 12777 . . . . . . . . . . . . . . . . 17  |-  ( p  e.  Prime  ->  p  e.  NN )
2423adantl 452 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  NN  /\  p  e.  Prime )  ->  p  e.  NN )
25 nnnn0 9988 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  k  e.  NN0 )
26 nnexpcl 11132 . . . . . . . . . . . . . . . 16  |-  ( ( p  e.  NN  /\  k  e.  NN0 )  -> 
( p ^ k
)  e.  NN )
2724, 25, 26syl2an 463 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( p ^
k )  e.  NN )
2827nnzd 10132 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( p ^
k )  e.  ZZ )
29 nnz 10061 . . . . . . . . . . . . . . 15  |-  ( A  e.  NN  ->  A  e.  ZZ )
3029ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  A  e.  ZZ )
31 dvdstr 12578 . . . . . . . . . . . . . 14  |-  ( ( p  e.  ZZ  /\  ( p ^ k
)  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( p  ||  ( p ^ k
)  /\  ( p ^ k )  ||  A )  ->  p  ||  A ) )
3222, 28, 30, 31syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p 
||  ( p ^
k )  /\  (
p ^ k ) 
||  A )  ->  p  ||  A ) )
3321, 32mpand 656 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p ^ k )  ||  A  ->  p  ||  A
) )
34 simpll 730 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  A  e.  NN )
35 dvdsle 12590 . . . . . . . . . . . . 13  |-  ( ( p  e.  ZZ  /\  A  e.  NN )  ->  ( p  ||  A  ->  p  <_  A )
)
3622, 34, 35syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( p  ||  A  ->  p  <_  A
) )
3733, 36syld 40 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p ^ k )  ||  A  ->  p  <_  A
) )
3823ad2antlr 707 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  p  e.  NN )
39 fznn 10868 . . . . . . . . . . . . 13  |-  ( A  e.  ZZ  ->  (
p  e.  ( 1 ... A )  <->  ( p  e.  NN  /\  p  <_  A ) ) )
4039baibd 875 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  NN )  ->  ( p  e.  ( 1 ... A )  <-> 
p  <_  A )
)
4130, 38, 40syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( p  e.  ( 1 ... A
)  <->  p  <_  A ) )
4237, 41sylibrd 225 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p ^ k )  ||  A  ->  p  e.  ( 1 ... A ) ) )
4342pm4.71rd 616 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p ^ k )  ||  A 
<->  ( p  e.  ( 1 ... A )  /\  ( p ^
k )  ||  A
) ) )
44 breq1 4042 . . . . . . . . . . 11  |-  ( x  =  ( p ^
k )  ->  (
x  ||  A  <->  ( p ^ k )  ||  A ) )
4544elrab3 2937 . . . . . . . . . 10  |-  ( ( p ^ k )  e.  NN  ->  (
( p ^ k
)  e.  { x  e.  NN  |  x  ||  A }  <->  ( p ^
k )  ||  A
) )
4627, 45syl 15 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p ^ k )  e. 
{ x  e.  NN  |  x  ||  A }  <->  ( p ^ k ) 
||  A ) )
47 simplr 731 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  p  e.  Prime )
4825adantl 452 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  k  e.  NN0 )
49 pcdvdsb 12937 . . . . . . . . . . 11  |-  ( ( p  e.  Prime  /\  A  e.  ZZ  /\  k  e. 
NN0 )  ->  (
k  <_  ( p  pCnt  A )  <->  ( p ^ k )  ||  A ) )
5047, 30, 48, 49syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( k  <_ 
( p  pCnt  A
)  <->  ( p ^
k )  ||  A
) )
5150anbi2d 684 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p  e.  ( 1 ... A )  /\  k  <_  ( p  pCnt  A
) )  <->  ( p  e.  ( 1 ... A
)  /\  ( p ^ k )  ||  A ) ) )
5243, 46, 513bitr4rd 277 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p  e.  ( 1 ... A )  /\  k  <_  ( p  pCnt  A
) )  <->  ( p ^ k )  e. 
{ x  e.  NN  |  x  ||  A }
) )
5352pm5.32da 622 . . . . . . 7  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( ( k  e.  NN  /\  ( p  e.  ( 1 ... A )  /\  k  <_  ( p  pCnt  A
) ) )  <->  ( k  e.  NN  /\  ( p ^ k )  e. 
{ x  e.  NN  |  x  ||  A }
) ) )
5417, 53syl5bb 248 . . . . . 6  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( ( p  e.  ( 1 ... A
)  /\  ( k  e.  NN  /\  k  <_ 
( p  pCnt  A
) ) )  <->  ( k  e.  NN  /\  ( p ^ k )  e. 
{ x  e.  NN  |  x  ||  A }
) ) )
5516, 54bitrd 244 . . . . 5  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( ( p  e.  ( 1 ... A
)  /\  k  e.  ( 1 ... (
p  pCnt  A )
) )  <->  ( k  e.  NN  /\  ( p ^ k )  e. 
{ x  e.  NN  |  x  ||  A }
) ) )
5655pm5.32da 622 . . . 4  |-  ( A  e.  NN  ->  (
( p  e.  Prime  /\  ( p  e.  ( 1 ... A )  /\  k  e.  ( 1 ... ( p 
pCnt  A ) ) ) )  <->  ( p  e. 
Prime  /\  ( k  e.  NN  /\  ( p ^ k )  e. 
{ x  e.  NN  |  x  ||  A }
) ) ) )
57 elin 3371 . . . . . 6  |-  ( p  e.  ( ( 1 ... A )  i^i 
Prime )  <->  ( p  e.  ( 1 ... A
)  /\  p  e.  Prime ) )
5857anbi1i 676 . . . . 5  |-  ( ( p  e.  ( ( 1 ... A )  i^i  Prime )  /\  k  e.  ( 1 ... (
p  pCnt  A )
) )  <->  ( (
p  e.  ( 1 ... A )  /\  p  e.  Prime )  /\  k  e.  ( 1 ... ( p  pCnt  A ) ) ) )
59 anass 630 . . . . 5  |-  ( ( ( p  e.  ( 1 ... A )  /\  p  e.  Prime )  /\  k  e.  ( 1 ... ( p 
pCnt  A ) ) )  <-> 
( p  e.  ( 1 ... A )  /\  ( p  e. 
Prime  /\  k  e.  ( 1 ... ( p 
pCnt  A ) ) ) ) )
60 an12 772 . . . . 5  |-  ( ( p  e.  ( 1 ... A )  /\  ( p  e.  Prime  /\  k  e.  ( 1 ... ( p  pCnt  A ) ) ) )  <-> 
( p  e.  Prime  /\  ( p  e.  ( 1 ... A )  /\  k  e.  ( 1 ... ( p 
pCnt  A ) ) ) ) )
6158, 59, 603bitri 262 . . . 4  |-  ( ( p  e.  ( ( 1 ... A )  i^i  Prime )  /\  k  e.  ( 1 ... (
p  pCnt  A )
) )  <->  ( p  e.  Prime  /\  ( p  e.  ( 1 ... A
)  /\  k  e.  ( 1 ... (
p  pCnt  A )
) ) ) )
62 anass 630 . . . 4  |-  ( ( ( p  e.  Prime  /\  k  e.  NN )  /\  ( p ^
k )  e.  {
x  e.  NN  |  x  ||  A } )  <-> 
( p  e.  Prime  /\  ( k  e.  NN  /\  ( p ^ k
)  e.  { x  e.  NN  |  x  ||  A } ) ) )
6356, 61, 623bitr4g 279 . . 3  |-  ( A  e.  NN  ->  (
( p  e.  ( ( 1 ... A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( p  pCnt  A ) ) )  <->  ( (
p  e.  Prime  /\  k  e.  NN )  /\  (
p ^ k )  e.  { x  e.  NN  |  x  ||  A } ) ) )
647sselda 3193 . . . . 5  |-  ( ( A  e.  NN  /\  n  e.  { x  e.  NN  |  x  ||  A } )  ->  n  e.  NN )
65 vmacl 20372 . . . . 5  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
6664, 65syl 15 . . . 4  |-  ( ( A  e.  NN  /\  n  e.  { x  e.  NN  |  x  ||  A } )  ->  (Λ `  n )  e.  RR )
6766recnd 8877 . . 3  |-  ( ( A  e.  NN  /\  n  e.  { x  e.  NN  |  x  ||  A } )  ->  (Λ `  n )  e.  CC )
68 simprr 733 . . 3  |-  ( ( A  e.  NN  /\  ( n  e.  { x  e.  NN  |  x  ||  A }  /\  (Λ `  n )  =  0 ) )  ->  (Λ `  n )  =  0 )
691, 5, 7, 10, 63, 67, 68fsumvma 20468 . 2  |-  ( A  e.  NN  ->  sum_ n  e.  { x  e.  NN  |  x  ||  A } 
(Λ `  n )  = 
sum_ p  e.  (
( 1 ... A
)  i^i  Prime ) sum_ k  e.  ( 1 ... ( p  pCnt  A ) ) (Λ `  (
p ^ k ) ) )
7057simprbi 450 . . . . . . 7  |-  ( p  e.  ( ( 1 ... A )  i^i 
Prime )  ->  p  e. 
Prime )
7170ad2antlr 707 . . . . . 6  |-  ( ( ( A  e.  NN  /\  p  e.  ( ( 1 ... A )  i^i  Prime ) )  /\  k  e.  ( 1 ... ( p  pCnt  A ) ) )  ->  p  e.  Prime )
72 elfznn 10835 . . . . . . 7  |-  ( k  e.  ( 1 ... ( p  pCnt  A
) )  ->  k  e.  NN )
7372adantl 452 . . . . . 6  |-  ( ( ( A  e.  NN  /\  p  e.  ( ( 1 ... A )  i^i  Prime ) )  /\  k  e.  ( 1 ... ( p  pCnt  A ) ) )  -> 
k  e.  NN )
74 vmappw 20370 . . . . . 6  |-  ( ( p  e.  Prime  /\  k  e.  NN )  ->  (Λ `  ( p ^ k
) )  =  ( log `  p ) )
7571, 73, 74syl2anc 642 . . . . 5  |-  ( ( ( A  e.  NN  /\  p  e.  ( ( 1 ... A )  i^i  Prime ) )  /\  k  e.  ( 1 ... ( p  pCnt  A ) ) )  -> 
(Λ `  ( p ^
k ) )  =  ( log `  p
) )
7675sumeq2dv 12192 . . . 4  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  sum_ k  e.  ( 1 ... (
p  pCnt  A )
) (Λ `  ( p ^ k ) )  =  sum_ k  e.  ( 1 ... ( p 
pCnt  A ) ) ( log `  p ) )
77 fzfid 11051 . . . . 5  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  (
1 ... ( p  pCnt  A ) )  e.  Fin )
7870, 23syl 15 . . . . . . . . 9  |-  ( p  e.  ( ( 1 ... A )  i^i 
Prime )  ->  p  e.  NN )
7978adantl 452 . . . . . . . 8  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  p  e.  NN )
8079nnrpd 10405 . . . . . . 7  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  p  e.  RR+ )
8180relogcld 19990 . . . . . 6  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  ( log `  p )  e.  RR )
8281recnd 8877 . . . . 5  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  ( log `  p )  e.  CC )
83 fsumconst 12268 . . . . 5  |-  ( ( ( 1 ... (
p  pCnt  A )
)  e.  Fin  /\  ( log `  p )  e.  CC )  ->  sum_ k  e.  ( 1 ... ( p  pCnt  A ) ) ( log `  p )  =  ( ( # `  (
1 ... ( p  pCnt  A ) ) )  x.  ( log `  p
) ) )
8477, 82, 83syl2anc 642 . . . 4  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  sum_ k  e.  ( 1 ... (
p  pCnt  A )
) ( log `  p
)  =  ( (
# `  ( 1 ... ( p  pCnt  A
) ) )  x.  ( log `  p
) ) )
8570, 12sylan2 460 . . . . . 6  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  (
p  pCnt  A )  e.  NN0 )
86 hashfz1 11361 . . . . . 6  |-  ( ( p  pCnt  A )  e.  NN0  ->  ( # `  (
1 ... ( p  pCnt  A ) ) )  =  ( p  pCnt  A
) )
8785, 86syl 15 . . . . 5  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  ( # `
 ( 1 ... ( p  pCnt  A
) ) )  =  ( p  pCnt  A
) )
8887oveq1d 5889 . . . 4  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  (
( # `  ( 1 ... ( p  pCnt  A ) ) )  x.  ( log `  p
) )  =  ( ( p  pCnt  A
)  x.  ( log `  p ) ) )
8976, 84, 883eqtrd 2332 . . 3  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  sum_ k  e.  ( 1 ... (
p  pCnt  A )
) (Λ `  ( p ^ k ) )  =  ( ( p 
pCnt  A )  x.  ( log `  p ) ) )
9089sumeq2dv 12192 . 2  |-  ( A  e.  NN  ->  sum_ p  e.  ( ( 1 ... A )  i^i  Prime )
sum_ k  e.  ( 1 ... ( p 
pCnt  A ) ) (Λ `  ( p ^ k
) )  =  sum_ p  e.  ( ( 1 ... A )  i^i 
Prime ) ( ( p 
pCnt  A )  x.  ( log `  p ) ) )
91 pclogsum 20470 . 2  |-  ( A  e.  NN  ->  sum_ p  e.  ( ( 1 ... A )  i^i  Prime ) ( ( p  pCnt  A )  x.  ( log `  p ) )  =  ( log `  A
) )
9269, 90, 913eqtrd 2332 1  |-  ( A  e.  NN  ->  sum_ n  e.  { x  e.  NN  |  x  ||  A } 
(Λ `  n )  =  ( log `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   {crab 2560    i^i cin 3164    C_ wss 3165   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Fincfn 6879   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    x. cmul 8758    <_ cle 8884   NNcn 9762   NN0cn0 9981   ZZcz 10040   ...cfz 10798   ^cexp 11120   #chash 11353   sum_csu 12174    || cdivides 12547   Primecprime 12774    pCnt cpc 12905   logclog 19928  Λcvma 20345
This theorem is referenced by:  logfac2  20472  dchrvmasumlem1  20660  vmalogdivsum2  20703  logsqvma  20707
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175  df-ef 12365  df-sin 12367  df-cos 12368  df-pi 12370  df-dvds 12548  df-gcd 12702  df-prm 12775  df-pc 12906  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-limc 19232  df-dv 19233  df-log 19930  df-vma 20351
  Copyright terms: Public domain W3C validator