MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmasum Unicode version

Theorem vmasum 20382
Description: The sum of the von Mangoldt function over the divisors of  n. Equation 9.2.4 of [Shapiro], p. 328. (Contributed by Mario Carneiro, 15-Apr-2016.)
Assertion
Ref Expression
vmasum  |-  ( A  e.  NN  ->  sum_ n  e.  { x  e.  NN  |  x  ||  A } 
(Λ `  n )  =  ( log `  A
) )
Distinct variable group:    x, n, A

Proof of Theorem vmasum
StepHypRef Expression
1 fveq2 5423 . . 3  |-  ( n  =  ( p ^
k )  ->  (Λ `  n )  =  (Λ `  ( p ^ k
) ) )
2 fzfid 10966 . . . 4  |-  ( A  e.  NN  ->  (
1 ... A )  e. 
Fin )
3 sgmss 20271 . . . 4  |-  ( A  e.  NN  ->  { x  e.  NN  |  x  ||  A }  C_  ( 1 ... A ) )
4 ssfi 7016 . . . 4  |-  ( ( ( 1 ... A
)  e.  Fin  /\  { x  e.  NN  |  x  ||  A }  C_  ( 1 ... A
) )  ->  { x  e.  NN  |  x  ||  A }  e.  Fin )
52, 3, 4syl2anc 645 . . 3  |-  ( A  e.  NN  ->  { x  e.  NN  |  x  ||  A }  e.  Fin )
6 ssrab2 3200 . . . 4  |-  { x  e.  NN  |  x  ||  A }  C_  NN
76a1i 12 . . 3  |-  ( A  e.  NN  ->  { x  e.  NN  |  x  ||  A }  C_  NN )
8 inss1 3331 . . . 4  |-  ( ( 1 ... A )  i^i  Prime )  C_  (
1 ... A )
9 ssfi 7016 . . . 4  |-  ( ( ( 1 ... A
)  e.  Fin  /\  ( ( 1 ... A )  i^i  Prime ) 
C_  ( 1 ... A ) )  -> 
( ( 1 ... A )  i^i  Prime )  e.  Fin )
102, 8, 9sylancl 646 . . 3  |-  ( A  e.  NN  ->  (
( 1 ... A
)  i^i  Prime )  e. 
Fin )
11 pccl 12829 . . . . . . . . . 10  |-  ( ( p  e.  Prime  /\  A  e.  NN )  ->  (
p  pCnt  A )  e.  NN0 )
1211ancoms 441 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( p  pCnt  A
)  e.  NN0 )
1312nn0zd 10047 . . . . . . . 8  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( p  pCnt  A
)  e.  ZZ )
14 fznn 10783 . . . . . . . 8  |-  ( ( p  pCnt  A )  e.  ZZ  ->  ( k  e.  ( 1 ... (
p  pCnt  A )
)  <->  ( k  e.  NN  /\  k  <_ 
( p  pCnt  A
) ) ) )
1513, 14syl 17 . . . . . . 7  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( k  e.  ( 1 ... ( p 
pCnt  A ) )  <->  ( k  e.  NN  /\  k  <_ 
( p  pCnt  A
) ) ) )
1615anbi2d 687 . . . . . 6  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( ( p  e.  ( 1 ... A
)  /\  k  e.  ( 1 ... (
p  pCnt  A )
) )  <->  ( p  e.  ( 1 ... A
)  /\  ( k  e.  NN  /\  k  <_ 
( p  pCnt  A
) ) ) ) )
17 an12 775 . . . . . . 7  |-  ( ( p  e.  ( 1 ... A )  /\  ( k  e.  NN  /\  k  <_  ( p  pCnt  A ) ) )  <-> 
( k  e.  NN  /\  ( p  e.  ( 1 ... A )  /\  k  <_  (
p  pCnt  A )
) ) )
18 prmz 12688 . . . . . . . . . . . . . . 15  |-  ( p  e.  Prime  ->  p  e.  ZZ )
1918adantl 454 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  p  e.  Prime )  ->  p  e.  ZZ )
20 iddvdsexp 12479 . . . . . . . . . . . . . 14  |-  ( ( p  e.  ZZ  /\  k  e.  NN )  ->  p  ||  ( p ^ k ) )
2119, 20sylan 459 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  p  ||  (
p ^ k ) )
2218ad2antlr 710 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  p  e.  ZZ )
23 prmnn 12689 . . . . . . . . . . . . . . . . 17  |-  ( p  e.  Prime  ->  p  e.  NN )
2423adantl 454 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  NN  /\  p  e.  Prime )  ->  p  e.  NN )
25 nnnn0 9904 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  k  e.  NN0 )
26 nnexpcl 11047 . . . . . . . . . . . . . . . 16  |-  ( ( p  e.  NN  /\  k  e.  NN0 )  -> 
( p ^ k
)  e.  NN )
2724, 25, 26syl2an 465 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( p ^
k )  e.  NN )
2827nnzd 10048 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( p ^
k )  e.  ZZ )
29 nnz 9977 . . . . . . . . . . . . . . 15  |-  ( A  e.  NN  ->  A  e.  ZZ )
3029ad2antrr 709 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  A  e.  ZZ )
31 dvdstr 12489 . . . . . . . . . . . . . 14  |-  ( ( p  e.  ZZ  /\  ( p ^ k
)  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( p  ||  ( p ^ k
)  /\  ( p ^ k )  ||  A )  ->  p  ||  A ) )
3222, 28, 30, 31syl3anc 1187 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p 
||  ( p ^
k )  /\  (
p ^ k ) 
||  A )  ->  p  ||  A ) )
3321, 32mpand 659 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p ^ k )  ||  A  ->  p  ||  A
) )
34 simpll 733 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  A  e.  NN )
35 dvdsle 12501 . . . . . . . . . . . . 13  |-  ( ( p  e.  ZZ  /\  A  e.  NN )  ->  ( p  ||  A  ->  p  <_  A )
)
3622, 34, 35syl2anc 645 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( p  ||  A  ->  p  <_  A
) )
3733, 36syld 42 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p ^ k )  ||  A  ->  p  <_  A
) )
3823ad2antlr 710 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  p  e.  NN )
39 fznn 10783 . . . . . . . . . . . . 13  |-  ( A  e.  ZZ  ->  (
p  e.  ( 1 ... A )  <->  ( p  e.  NN  /\  p  <_  A ) ) )
4039baibd 880 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  NN )  ->  ( p  e.  ( 1 ... A )  <-> 
p  <_  A )
)
4130, 38, 40syl2anc 645 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( p  e.  ( 1 ... A
)  <->  p  <_  A ) )
4237, 41sylibrd 227 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p ^ k )  ||  A  ->  p  e.  ( 1 ... A ) ) )
4342pm4.71rd 619 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p ^ k )  ||  A 
<->  ( p  e.  ( 1 ... A )  /\  ( p ^
k )  ||  A
) ) )
44 breq1 3966 . . . . . . . . . . 11  |-  ( x  =  ( p ^
k )  ->  (
x  ||  A  <->  ( p ^ k )  ||  A ) )
4544elrab3 2875 . . . . . . . . . 10  |-  ( ( p ^ k )  e.  NN  ->  (
( p ^ k
)  e.  { x  e.  NN  |  x  ||  A }  <->  ( p ^
k )  ||  A
) )
4627, 45syl 17 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p ^ k )  e. 
{ x  e.  NN  |  x  ||  A }  <->  ( p ^ k ) 
||  A ) )
47 simplr 734 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  p  e.  Prime )
4825adantl 454 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  k  e.  NN0 )
49 pcdvdsb 12848 . . . . . . . . . . 11  |-  ( ( p  e.  Prime  /\  A  e.  ZZ  /\  k  e. 
NN0 )  ->  (
k  <_  ( p  pCnt  A )  <->  ( p ^ k )  ||  A ) )
5047, 30, 48, 49syl3anc 1187 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( k  <_ 
( p  pCnt  A
)  <->  ( p ^
k )  ||  A
) )
5150anbi2d 687 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p  e.  ( 1 ... A )  /\  k  <_  ( p  pCnt  A
) )  <->  ( p  e.  ( 1 ... A
)  /\  ( p ^ k )  ||  A ) ) )
5243, 46, 513bitr4rd 279 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  p  e.  Prime )  /\  k  e.  NN )  ->  ( ( p  e.  ( 1 ... A )  /\  k  <_  ( p  pCnt  A
) )  <->  ( p ^ k )  e. 
{ x  e.  NN  |  x  ||  A }
) )
5352pm5.32da 625 . . . . . . 7  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( ( k  e.  NN  /\  ( p  e.  ( 1 ... A )  /\  k  <_  ( p  pCnt  A
) ) )  <->  ( k  e.  NN  /\  ( p ^ k )  e. 
{ x  e.  NN  |  x  ||  A }
) ) )
5417, 53syl5bb 250 . . . . . 6  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( ( p  e.  ( 1 ... A
)  /\  ( k  e.  NN  /\  k  <_ 
( p  pCnt  A
) ) )  <->  ( k  e.  NN  /\  ( p ^ k )  e. 
{ x  e.  NN  |  x  ||  A }
) ) )
5516, 54bitrd 246 . . . . 5  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( ( p  e.  ( 1 ... A
)  /\  k  e.  ( 1 ... (
p  pCnt  A )
) )  <->  ( k  e.  NN  /\  ( p ^ k )  e. 
{ x  e.  NN  |  x  ||  A }
) ) )
5655pm5.32da 625 . . . 4  |-  ( A  e.  NN  ->  (
( p  e.  Prime  /\  ( p  e.  ( 1 ... A )  /\  k  e.  ( 1 ... ( p 
pCnt  A ) ) ) )  <->  ( p  e. 
Prime  /\  ( k  e.  NN  /\  ( p ^ k )  e. 
{ x  e.  NN  |  x  ||  A }
) ) ) )
57 elin 3300 . . . . . 6  |-  ( p  e.  ( ( 1 ... A )  i^i 
Prime )  <->  ( p  e.  ( 1 ... A
)  /\  p  e.  Prime ) )
5857anbi1i 679 . . . . 5  |-  ( ( p  e.  ( ( 1 ... A )  i^i  Prime )  /\  k  e.  ( 1 ... (
p  pCnt  A )
) )  <->  ( (
p  e.  ( 1 ... A )  /\  p  e.  Prime )  /\  k  e.  ( 1 ... ( p  pCnt  A ) ) ) )
59 anass 633 . . . . 5  |-  ( ( ( p  e.  ( 1 ... A )  /\  p  e.  Prime )  /\  k  e.  ( 1 ... ( p 
pCnt  A ) ) )  <-> 
( p  e.  ( 1 ... A )  /\  ( p  e. 
Prime  /\  k  e.  ( 1 ... ( p 
pCnt  A ) ) ) ) )
60 an12 775 . . . . 5  |-  ( ( p  e.  ( 1 ... A )  /\  ( p  e.  Prime  /\  k  e.  ( 1 ... ( p  pCnt  A ) ) ) )  <-> 
( p  e.  Prime  /\  ( p  e.  ( 1 ... A )  /\  k  e.  ( 1 ... ( p 
pCnt  A ) ) ) ) )
6158, 59, 603bitri 264 . . . 4  |-  ( ( p  e.  ( ( 1 ... A )  i^i  Prime )  /\  k  e.  ( 1 ... (
p  pCnt  A )
) )  <->  ( p  e.  Prime  /\  ( p  e.  ( 1 ... A
)  /\  k  e.  ( 1 ... (
p  pCnt  A )
) ) ) )
62 anass 633 . . . 4  |-  ( ( ( p  e.  Prime  /\  k  e.  NN )  /\  ( p ^
k )  e.  {
x  e.  NN  |  x  ||  A } )  <-> 
( p  e.  Prime  /\  ( k  e.  NN  /\  ( p ^ k
)  e.  { x  e.  NN  |  x  ||  A } ) ) )
6356, 61, 623bitr4g 281 . . 3  |-  ( A  e.  NN  ->  (
( p  e.  ( ( 1 ... A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( p  pCnt  A ) ) )  <->  ( (
p  e.  Prime  /\  k  e.  NN )  /\  (
p ^ k )  e.  { x  e.  NN  |  x  ||  A } ) ) )
647sselda 3122 . . . . 5  |-  ( ( A  e.  NN  /\  n  e.  { x  e.  NN  |  x  ||  A } )  ->  n  e.  NN )
65 vmacl 20283 . . . . 5  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
6664, 65syl 17 . . . 4  |-  ( ( A  e.  NN  /\  n  e.  { x  e.  NN  |  x  ||  A } )  ->  (Λ `  n )  e.  RR )
6766recnd 8794 . . 3  |-  ( ( A  e.  NN  /\  n  e.  { x  e.  NN  |  x  ||  A } )  ->  (Λ `  n )  e.  CC )
68 simprr 736 . . 3  |-  ( ( A  e.  NN  /\  ( n  e.  { x  e.  NN  |  x  ||  A }  /\  (Λ `  n )  =  0 ) )  ->  (Λ `  n )  =  0 )
691, 5, 7, 10, 63, 67, 68fsumvma 20379 . 2  |-  ( A  e.  NN  ->  sum_ n  e.  { x  e.  NN  |  x  ||  A } 
(Λ `  n )  = 
sum_ p  e.  (
( 1 ... A
)  i^i  Prime ) sum_ k  e.  ( 1 ... ( p  pCnt  A ) ) (Λ `  (
p ^ k ) ) )
7057simprbi 452 . . . . . . 7  |-  ( p  e.  ( ( 1 ... A )  i^i 
Prime )  ->  p  e. 
Prime )
7170ad2antlr 710 . . . . . 6  |-  ( ( ( A  e.  NN  /\  p  e.  ( ( 1 ... A )  i^i  Prime ) )  /\  k  e.  ( 1 ... ( p  pCnt  A ) ) )  ->  p  e.  Prime )
72 elfznn 10750 . . . . . . 7  |-  ( k  e.  ( 1 ... ( p  pCnt  A
) )  ->  k  e.  NN )
7372adantl 454 . . . . . 6  |-  ( ( ( A  e.  NN  /\  p  e.  ( ( 1 ... A )  i^i  Prime ) )  /\  k  e.  ( 1 ... ( p  pCnt  A ) ) )  -> 
k  e.  NN )
74 vmappw 20281 . . . . . 6  |-  ( ( p  e.  Prime  /\  k  e.  NN )  ->  (Λ `  ( p ^ k
) )  =  ( log `  p ) )
7571, 73, 74syl2anc 645 . . . . 5  |-  ( ( ( A  e.  NN  /\  p  e.  ( ( 1 ... A )  i^i  Prime ) )  /\  k  e.  ( 1 ... ( p  pCnt  A ) ) )  -> 
(Λ `  ( p ^
k ) )  =  ( log `  p
) )
7675sumeq2dv 12106 . . . 4  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  sum_ k  e.  ( 1 ... (
p  pCnt  A )
) (Λ `  ( p ^ k ) )  =  sum_ k  e.  ( 1 ... ( p 
pCnt  A ) ) ( log `  p ) )
77 fzfid 10966 . . . . 5  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  (
1 ... ( p  pCnt  A ) )  e.  Fin )
7870, 23syl 17 . . . . . . . . 9  |-  ( p  e.  ( ( 1 ... A )  i^i 
Prime )  ->  p  e.  NN )
7978adantl 454 . . . . . . . 8  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  p  e.  NN )
8079nnrpd 10321 . . . . . . 7  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  p  e.  RR+ )
8180relogcld 19901 . . . . . 6  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  ( log `  p )  e.  RR )
8281recnd 8794 . . . . 5  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  ( log `  p )  e.  CC )
83 fsumconst 12182 . . . . 5  |-  ( ( ( 1 ... (
p  pCnt  A )
)  e.  Fin  /\  ( log `  p )  e.  CC )  ->  sum_ k  e.  ( 1 ... ( p  pCnt  A ) ) ( log `  p )  =  ( ( # `  (
1 ... ( p  pCnt  A ) ) )  x.  ( log `  p
) ) )
8477, 82, 83syl2anc 645 . . . 4  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  sum_ k  e.  ( 1 ... (
p  pCnt  A )
) ( log `  p
)  =  ( (
# `  ( 1 ... ( p  pCnt  A
) ) )  x.  ( log `  p
) ) )
8570, 12sylan2 462 . . . . . 6  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  (
p  pCnt  A )  e.  NN0 )
86 hashfz1 11276 . . . . . 6  |-  ( ( p  pCnt  A )  e.  NN0  ->  ( # `  (
1 ... ( p  pCnt  A ) ) )  =  ( p  pCnt  A
) )
8785, 86syl 17 . . . . 5  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  ( # `
 ( 1 ... ( p  pCnt  A
) ) )  =  ( p  pCnt  A
) )
8887oveq1d 5772 . . . 4  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  (
( # `  ( 1 ... ( p  pCnt  A ) ) )  x.  ( log `  p
) )  =  ( ( p  pCnt  A
)  x.  ( log `  p ) ) )
8976, 84, 883eqtrd 2292 . . 3  |-  ( ( A  e.  NN  /\  p  e.  ( (
1 ... A )  i^i 
Prime ) )  ->  sum_ k  e.  ( 1 ... (
p  pCnt  A )
) (Λ `  ( p ^ k ) )  =  ( ( p 
pCnt  A )  x.  ( log `  p ) ) )
9089sumeq2dv 12106 . 2  |-  ( A  e.  NN  ->  sum_ p  e.  ( ( 1 ... A )  i^i  Prime )
sum_ k  e.  ( 1 ... ( p 
pCnt  A ) ) (Λ `  ( p ^ k
) )  =  sum_ p  e.  ( ( 1 ... A )  i^i 
Prime ) ( ( p 
pCnt  A )  x.  ( log `  p ) ) )
91 pclogsum 20381 . 2  |-  ( A  e.  NN  ->  sum_ p  e.  ( ( 1 ... A )  i^i  Prime ) ( ( p  pCnt  A )  x.  ( log `  p ) )  =  ( log `  A
) )
9269, 90, 913eqtrd 2292 1  |-  ( A  e.  NN  ->  sum_ n  e.  { x  e.  NN  |  x  ||  A } 
(Λ `  n )  =  ( log `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   {crab 2519    i^i cin 3093    C_ wss 3094   class class class wbr 3963   ` cfv 4638  (class class class)co 5757   Fincfn 6796   CCcc 8668   RRcr 8669   0cc0 8670   1c1 8671    x. cmul 8675    <_ cle 8801   NNcn 9679   NN0cn0 9897   ZZcz 9956   ...cfz 10713   ^cexp 11035   #chash 11268   sum_csu 12088    || cdivides 12458   Primecprime 12685    pCnt cpc 12816   logclog 19839  Λcvma 20256
This theorem is referenced by:  logfac2  20383  dchrvmasumlem1  20571  vmalogdivsum2  20614  logsqvma  20618
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-inf2 7275  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-pre-sup 8748  ax-addf 8749  ax-mulf 8750
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-iin 3849  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-isom 4655  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-of 5977  df-1st 6021  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-1o 6412  df-2o 6413  df-oadd 6416  df-er 6593  df-map 6707  df-pm 6708  df-ixp 6751  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-fi 7098  df-sup 7127  df-oi 7158  df-card 7505  df-cda 7727  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-n 9680  df-2 9737  df-3 9738  df-4 9739  df-5 9740  df-6 9741  df-7 9742  df-8 9743  df-9 9744  df-10 9745  df-n0 9898  df-z 9957  df-dec 10057  df-uz 10163  df-q 10249  df-rp 10287  df-xneg 10384  df-xadd 10385  df-xmul 10386  df-ioo 10591  df-ioc 10592  df-ico 10593  df-icc 10594  df-fz 10714  df-fzo 10802  df-fl 10856  df-mod 10905  df-seq 10978  df-exp 11036  df-fac 11220  df-bc 11247  df-hash 11269  df-shft 11492  df-cj 11514  df-re 11515  df-im 11516  df-sqr 11650  df-abs 11651  df-limsup 11875  df-clim 11892  df-rlim 11893  df-sum 12089  df-ef 12276  df-sin 12278  df-cos 12279  df-pi 12281  df-divides 12459  df-gcd 12613  df-prime 12686  df-pc 12817  df-struct 13077  df-ndx 13078  df-slot 13079  df-base 13080  df-sets 13081  df-ress 13082  df-plusg 13148  df-mulr 13149  df-starv 13150  df-sca 13151  df-vsca 13152  df-tset 13154  df-ple 13155  df-ds 13157  df-hom 13159  df-cco 13160  df-rest 13254  df-topn 13255  df-topgen 13271  df-pt 13272  df-prds 13275  df-xrs 13330  df-0g 13331  df-gsum 13332  df-qtop 13337  df-imas 13338  df-xps 13340  df-mre 13415  df-mrc 13416  df-acs 13418  df-mnd 14294  df-submnd 14343  df-mulg 14419  df-cntz 14720  df-cmn 15018  df-xmet 16300  df-met 16301  df-bl 16302  df-mopn 16303  df-cnfld 16305  df-top 16563  df-bases 16565  df-topon 16566  df-topsp 16567  df-cld 16683  df-ntr 16684  df-cls 16685  df-nei 16762  df-lp 16795  df-perf 16796  df-cn 16884  df-cnp 16885  df-haus 16970  df-tx 17184  df-hmeo 17373  df-fbas 17447  df-fg 17448  df-fil 17468  df-fm 17560  df-flim 17561  df-flf 17562  df-xms 17812  df-ms 17813  df-tms 17814  df-cncf 18309  df-limc 19143  df-dv 19144  df-log 19841  df-vma 20262
  Copyright terms: Public domain W3C validator