MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volcn Unicode version

Theorem volcn 19365
Description: The function formed by restricting a measurable set to a closed interval with a varying endpoint produces an increasing continuous function on the reals. (Contributed by Mario Carneiro, 30-Aug-2014.)
Hypothesis
Ref Expression
volcn.1  |-  F  =  ( x  e.  RR  |->  ( vol `  ( A  i^i  ( B [,] x ) ) ) )
Assertion
Ref Expression
volcn  |-  ( ( A  e.  dom  vol  /\  B  e.  RR )  ->  F  e.  ( RR -cn-> RR ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    F( x)

Proof of Theorem volcn
Dummy variables  u  e  v  y  z 
d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 731 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  A  e.  dom  vol )
2 iccmbl 19327 . . . . . . 7  |-  ( ( B  e.  RR  /\  x  e.  RR )  ->  ( B [,] x
)  e.  dom  vol )
32adantll 695 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  ( B [,] x )  e.  dom  vol )
4 inmbl 19303 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  ( B [,] x
)  e.  dom  vol )  ->  ( A  i^i  ( B [,] x ) )  e.  dom  vol )
51, 3, 4syl2anc 643 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  ( A  i^i  ( B [,] x ) )  e.  dom  vol )
6 mblvol 19293 . . . . 5  |-  ( ( A  i^i  ( B [,] x ) )  e.  dom  vol  ->  ( vol `  ( A  i^i  ( B [,] x ) ) )  =  ( vol * `  ( A  i^i  ( B [,] x ) ) ) )
75, 6syl 16 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  ( vol `  ( A  i^i  ( B [,] x ) ) )  =  ( vol * `  ( A  i^i  ( B [,] x ) ) ) )
8 inss2 3505 . . . . . 6  |-  ( A  i^i  ( B [,] x ) )  C_  ( B [,] x )
98a1i 11 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  ( A  i^i  ( B [,] x ) )  C_  ( B [,] x ) )
10 mblss 19294 . . . . . 6  |-  ( ( B [,] x )  e.  dom  vol  ->  ( B [,] x ) 
C_  RR )
113, 10syl 16 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  ( B [,] x )  C_  RR )
12 mblvol 19293 . . . . . . 7  |-  ( ( B [,] x )  e.  dom  vol  ->  ( vol `  ( B [,] x ) )  =  ( vol * `  ( B [,] x
) ) )
133, 12syl 16 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  ( vol `  ( B [,] x ) )  =  ( vol * `  ( B [,] x
) ) )
14 iccvolcl 19328 . . . . . . 7  |-  ( ( B  e.  RR  /\  x  e.  RR )  ->  ( vol `  ( B [,] x ) )  e.  RR )
1514adantll 695 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  ( vol `  ( B [,] x ) )  e.  RR )
1613, 15eqeltrrd 2462 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  ( vol * `  ( B [,] x
) )  e.  RR )
17 ovolsscl 19249 . . . . 5  |-  ( ( ( A  i^i  ( B [,] x ) ) 
C_  ( B [,] x )  /\  ( B [,] x )  C_  RR  /\  ( vol * `  ( B [,] x
) )  e.  RR )  ->  ( vol * `  ( A  i^i  ( B [,] x ) ) )  e.  RR )
189, 11, 16, 17syl3anc 1184 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  ( vol * `  ( A  i^i  ( B [,] x ) ) )  e.  RR )
197, 18eqeltrd 2461 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  x  e.  RR )  ->  ( vol `  ( A  i^i  ( B [,] x ) ) )  e.  RR )
20 volcn.1 . . 3  |-  F  =  ( x  e.  RR  |->  ( vol `  ( A  i^i  ( B [,] x ) ) ) )
2119, 20fmptd 5832 . 2  |-  ( ( A  e.  dom  vol  /\  B  e.  RR )  ->  F : RR --> RR )
22 simprr 734 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  ( y  e.  RR  /\  e  e.  RR+ ) )  ->  e  e.  RR+ )
23 oveq12 6029 . . . . . . . . . . . . 13  |-  ( ( v  =  z  /\  u  =  y )  ->  ( v  -  u
)  =  ( z  -  y ) )
2423ancoms 440 . . . . . . . . . . . 12  |-  ( ( u  =  y  /\  v  =  z )  ->  ( v  -  u
)  =  ( z  -  y ) )
2524fveq2d 5672 . . . . . . . . . . 11  |-  ( ( u  =  y  /\  v  =  z )  ->  ( abs `  (
v  -  u ) )  =  ( abs `  ( z  -  y
) ) )
2625breq1d 4163 . . . . . . . . . 10  |-  ( ( u  =  y  /\  v  =  z )  ->  ( ( abs `  (
v  -  u ) )  <  e  <->  ( abs `  ( z  -  y
) )  <  e
) )
27 fveq2 5668 . . . . . . . . . . . . 13  |-  ( v  =  z  ->  ( F `  v )  =  ( F `  z ) )
28 fveq2 5668 . . . . . . . . . . . . 13  |-  ( u  =  y  ->  ( F `  u )  =  ( F `  y ) )
2927, 28oveqan12rd 6040 . . . . . . . . . . . 12  |-  ( ( u  =  y  /\  v  =  z )  ->  ( ( F `  v )  -  ( F `  u )
)  =  ( ( F `  z )  -  ( F `  y ) ) )
3029fveq2d 5672 . . . . . . . . . . 11  |-  ( ( u  =  y  /\  v  =  z )  ->  ( abs `  (
( F `  v
)  -  ( F `
 u ) ) )  =  ( abs `  ( ( F `  z )  -  ( F `  y )
) ) )
3130breq1d 4163 . . . . . . . . . 10  |-  ( ( u  =  y  /\  v  =  z )  ->  ( ( abs `  (
( F `  v
)  -  ( F `
 u ) ) )  <  e  <->  ( abs `  ( ( F `  z )  -  ( F `  y )
) )  <  e
) )
3226, 31imbi12d 312 . . . . . . . . 9  |-  ( ( u  =  y  /\  v  =  z )  ->  ( ( ( abs `  ( v  -  u
) )  <  e  ->  ( abs `  (
( F `  v
)  -  ( F `
 u ) ) )  <  e )  <-> 
( ( abs `  (
z  -  y ) )  <  e  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) ) )
33 oveq12 6029 . . . . . . . . . . . . 13  |-  ( ( v  =  y  /\  u  =  z )  ->  ( v  -  u
)  =  ( y  -  z ) )
3433ancoms 440 . . . . . . . . . . . 12  |-  ( ( u  =  z  /\  v  =  y )  ->  ( v  -  u
)  =  ( y  -  z ) )
3534fveq2d 5672 . . . . . . . . . . 11  |-  ( ( u  =  z  /\  v  =  y )  ->  ( abs `  (
v  -  u ) )  =  ( abs `  ( y  -  z
) ) )
3635breq1d 4163 . . . . . . . . . 10  |-  ( ( u  =  z  /\  v  =  y )  ->  ( ( abs `  (
v  -  u ) )  <  e  <->  ( abs `  ( y  -  z
) )  <  e
) )
37 fveq2 5668 . . . . . . . . . . . . 13  |-  ( v  =  y  ->  ( F `  v )  =  ( F `  y ) )
38 fveq2 5668 . . . . . . . . . . . . 13  |-  ( u  =  z  ->  ( F `  u )  =  ( F `  z ) )
3937, 38oveqan12rd 6040 . . . . . . . . . . . 12  |-  ( ( u  =  z  /\  v  =  y )  ->  ( ( F `  v )  -  ( F `  u )
)  =  ( ( F `  y )  -  ( F `  z ) ) )
4039fveq2d 5672 . . . . . . . . . . 11  |-  ( ( u  =  z  /\  v  =  y )  ->  ( abs `  (
( F `  v
)  -  ( F `
 u ) ) )  =  ( abs `  ( ( F `  y )  -  ( F `  z )
) ) )
4140breq1d 4163 . . . . . . . . . 10  |-  ( ( u  =  z  /\  v  =  y )  ->  ( ( abs `  (
( F `  v
)  -  ( F `
 u ) ) )  <  e  <->  ( abs `  ( ( F `  y )  -  ( F `  z )
) )  <  e
) )
4236, 41imbi12d 312 . . . . . . . . 9  |-  ( ( u  =  z  /\  v  =  y )  ->  ( ( ( abs `  ( v  -  u
) )  <  e  ->  ( abs `  (
( F `  v
)  -  ( F `
 u ) ) )  <  e )  <-> 
( ( abs `  (
y  -  z ) )  <  e  -> 
( abs `  (
( F `  y
)  -  ( F `
 z ) ) )  <  e ) ) )
43 ssid 3310 . . . . . . . . . 10  |-  RR  C_  RR
4443a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  e  e.  RR+ )  ->  RR  C_  RR )
45 recn 9013 . . . . . . . . . . . . 13  |-  ( z  e.  RR  ->  z  e.  CC )
46 recn 9013 . . . . . . . . . . . . 13  |-  ( y  e.  RR  ->  y  e.  CC )
47 abssub 12057 . . . . . . . . . . . . 13  |-  ( ( z  e.  CC  /\  y  e.  CC )  ->  ( abs `  (
z  -  y ) )  =  ( abs `  ( y  -  z
) ) )
4845, 46, 47syl2anr 465 . . . . . . . . . . . 12  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( abs `  (
z  -  y ) )  =  ( abs `  ( y  -  z
) ) )
4948adantl 453 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR )
)  ->  ( abs `  ( z  -  y
) )  =  ( abs `  ( y  -  z ) ) )
5049breq1d 4163 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR )
)  ->  ( ( abs `  ( z  -  y ) )  < 
e  <->  ( abs `  (
y  -  z ) )  <  e ) )
5121adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  e  e.  RR+ )  ->  F : RR --> RR )
52 ffvelrn 5807 . . . . . . . . . . . . . 14  |-  ( ( F : RR --> RR  /\  y  e.  RR )  ->  ( F `  y
)  e.  RR )
53 ffvelrn 5807 . . . . . . . . . . . . . 14  |-  ( ( F : RR --> RR  /\  z  e.  RR )  ->  ( F `  z
)  e.  RR )
5452, 53anim12dan 811 . . . . . . . . . . . . 13  |-  ( ( F : RR --> RR  /\  ( y  e.  RR  /\  z  e.  RR ) )  ->  ( ( F `  y )  e.  RR  /\  ( F `
 z )  e.  RR ) )
5551, 54sylan 458 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR )
)  ->  ( ( F `  y )  e.  RR  /\  ( F `
 z )  e.  RR ) )
56 recn 9013 . . . . . . . . . . . . 13  |-  ( ( F `  z )  e.  RR  ->  ( F `  z )  e.  CC )
57 recn 9013 . . . . . . . . . . . . 13  |-  ( ( F `  y )  e.  RR  ->  ( F `  y )  e.  CC )
58 abssub 12057 . . . . . . . . . . . . 13  |-  ( ( ( F `  z
)  e.  CC  /\  ( F `  y )  e.  CC )  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  =  ( abs `  ( ( F `  y )  -  ( F `  z )
) ) )
5956, 57, 58syl2anr 465 . . . . . . . . . . . 12  |-  ( ( ( F `  y
)  e.  RR  /\  ( F `  z )  e.  RR )  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  =  ( abs `  ( ( F `  y )  -  ( F `  z )
) ) )
6055, 59syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR )
)  ->  ( abs `  ( ( F `  z )  -  ( F `  y )
) )  =  ( abs `  ( ( F `  y )  -  ( F `  z ) ) ) )
6160breq1d 4163 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR )
)  ->  ( ( abs `  ( ( F `
 z )  -  ( F `  y ) ) )  <  e  <->  ( abs `  ( ( F `  y )  -  ( F `  z ) ) )  <  e ) )
6250, 61imbi12d 312 . . . . . . . . 9  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR )
)  ->  ( (
( abs `  (
z  -  y ) )  <  e  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e )  <-> 
( ( abs `  (
y  -  z ) )  <  e  -> 
( abs `  (
( F `  y
)  -  ( F `
 z ) ) )  <  e ) ) )
63 simpr2 964 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
z  e.  RR )
64 oveq2 6028 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  z  ->  ( B [,] x )  =  ( B [,] z
) )
6564ineq2d 3485 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  ( A  i^i  ( B [,] x ) )  =  ( A  i^i  ( B [,] z ) ) )
6665fveq2d 5672 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  ( vol `  ( A  i^i  ( B [,] x ) ) )  =  ( vol `  ( A  i^i  ( B [,] z ) ) ) )
67 fvex 5682 . . . . . . . . . . . . . . . 16  |-  ( vol `  ( A  i^i  ( B [,] z ) ) )  e.  _V
6866, 20, 67fvmpt 5745 . . . . . . . . . . . . . . 15  |-  ( z  e.  RR  ->  ( F `  z )  =  ( vol `  ( A  i^i  ( B [,] z ) ) ) )
6963, 68syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( F `  z
)  =  ( vol `  ( A  i^i  ( B [,] z ) ) ) )
70 simplll 735 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  ->  A  e.  dom  vol )
71 simplr 732 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  e  e.  RR+ )  ->  B  e.  RR )
7271adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  ->  B  e.  RR )
73 iccmbl 19327 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  RR  /\  z  e.  RR )  ->  ( B [,] z
)  e.  dom  vol )
7472, 63, 73syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( B [,] z
)  e.  dom  vol )
75 inmbl 19303 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  dom  vol  /\  ( B [,] z
)  e.  dom  vol )  ->  ( A  i^i  ( B [,] z ) )  e.  dom  vol )
7670, 74, 75syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( A  i^i  ( B [,] z ) )  e.  dom  vol )
77 mblvol 19293 . . . . . . . . . . . . . . 15  |-  ( ( A  i^i  ( B [,] z ) )  e.  dom  vol  ->  ( vol `  ( A  i^i  ( B [,] z ) ) )  =  ( vol * `  ( A  i^i  ( B [,] z ) ) ) )
7876, 77syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol `  ( A  i^i  ( B [,] z ) ) )  =  ( vol * `  ( A  i^i  ( B [,] z ) ) ) )
7969, 78eqtrd 2419 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( F `  z
)  =  ( vol
* `  ( A  i^i  ( B [,] z
) ) ) )
80 simpr1 963 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
y  e.  RR )
81 oveq2 6028 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  y  ->  ( B [,] x )  =  ( B [,] y
) )
8281ineq2d 3485 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  ( A  i^i  ( B [,] x ) )  =  ( A  i^i  ( B [,] y ) ) )
8382fveq2d 5672 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  ( vol `  ( A  i^i  ( B [,] x ) ) )  =  ( vol `  ( A  i^i  ( B [,] y ) ) ) )
84 fvex 5682 . . . . . . . . . . . . . . . 16  |-  ( vol `  ( A  i^i  ( B [,] y ) ) )  e.  _V
8583, 20, 84fvmpt 5745 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR  ->  ( F `  y )  =  ( vol `  ( A  i^i  ( B [,] y ) ) ) )
8680, 85syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( F `  y
)  =  ( vol `  ( A  i^i  ( B [,] y ) ) ) )
87 simp1 957 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z )  ->  y  e.  RR )
88 iccmbl 19327 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  RR  /\  y  e.  RR )  ->  ( B [,] y
)  e.  dom  vol )
8971, 87, 88syl2an 464 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( B [,] y
)  e.  dom  vol )
90 inmbl 19303 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  dom  vol  /\  ( B [,] y
)  e.  dom  vol )  ->  ( A  i^i  ( B [,] y ) )  e.  dom  vol )
9170, 89, 90syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( A  i^i  ( B [,] y ) )  e.  dom  vol )
92 mblvol 19293 . . . . . . . . . . . . . . 15  |-  ( ( A  i^i  ( B [,] y ) )  e.  dom  vol  ->  ( vol `  ( A  i^i  ( B [,] y ) ) )  =  ( vol * `  ( A  i^i  ( B [,] y ) ) ) )
9391, 92syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol `  ( A  i^i  ( B [,] y ) ) )  =  ( vol * `  ( A  i^i  ( B [,] y ) ) ) )
9486, 93eqtrd 2419 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( F `  y
)  =  ( vol
* `  ( A  i^i  ( B [,] y
) ) ) )
9579, 94oveq12d 6038 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( F `  z )  -  ( F `  y )
)  =  ( ( vol * `  ( A  i^i  ( B [,] z ) ) )  -  ( vol * `  ( A  i^i  ( B [,] y ) ) ) ) )
9651adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  ->  F : RR --> RR )
9796, 63ffvelrnd 5810 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( F `  z
)  e.  RR )
9879, 97eqeltrrd 2462 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol * `  ( A  i^i  ( B [,] z ) ) )  e.  RR )
9972leidd 9525 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  ->  B  <_  B )
100 simpr3 965 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
y  <_  z )
101 iccss 10910 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( B  e.  RR  /\  z  e.  RR )  /\  ( B  <_  B  /\  y  <_  z
) )  ->  ( B [,] y )  C_  ( B [,] z ) )
10272, 63, 99, 100, 101syl22anc 1185 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( B [,] y
)  C_  ( B [,] z ) )
103 sslin 3510 . . . . . . . . . . . . . . . . . 18  |-  ( ( B [,] y ) 
C_  ( B [,] z )  ->  ( A  i^i  ( B [,] y ) )  C_  ( A  i^i  ( B [,] z ) ) )
104102, 103syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( A  i^i  ( B [,] y ) ) 
C_  ( A  i^i  ( B [,] z ) ) )
105 mblss 19294 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  i^i  ( B [,] z ) )  e.  dom  vol  ->  ( A  i^i  ( B [,] z ) ) 
C_  RR )
10676, 105syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( A  i^i  ( B [,] z ) ) 
C_  RR )
107104, 106sstrd 3301 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( A  i^i  ( B [,] y ) ) 
C_  RR )
108 iccssre 10924 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y [,] z
)  C_  RR )
10980, 63, 108syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( y [,] z
)  C_  RR )
110107, 109unssd 3466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) ) 
C_  RR )
11196, 80ffvelrnd 5810 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( F `  y
)  e.  RR )
11294, 111eqeltrrd 2462 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol * `  ( A  i^i  ( B [,] y ) ) )  e.  RR )
11363, 80resubcld 9397 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( z  -  y
)  e.  RR )
114112, 113readdcld 9048 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( vol * `  ( A  i^i  ( B [,] y ) ) )  +  ( z  -  y ) )  e.  RR )
115 ovolicc 19286 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z )  ->  ( vol * `  ( y [,] z ) )  =  ( z  -  y ) )
116115adantl 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol * `  ( y [,] z
) )  =  ( z  -  y ) )
117116, 113eqeltrd 2461 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol * `  ( y [,] z
) )  e.  RR )
118 ovolun 19262 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  i^i  ( B [,] y ) )  C_  RR  /\  ( vol * `  ( A  i^i  ( B [,] y ) ) )  e.  RR )  /\  ( ( y [,] z )  C_  RR  /\  ( vol * `  ( y [,] z
) )  e.  RR ) )  ->  ( vol * `  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) ) )  <_  ( ( vol
* `  ( A  i^i  ( B [,] y
) ) )  +  ( vol * `  ( y [,] z
) ) ) )
119107, 112, 109, 117, 118syl22anc 1185 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol * `  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) ) )  <_  ( ( vol * `  ( A  i^i  ( B [,] y ) ) )  +  ( vol * `  ( y [,] z
) ) ) )
120116oveq2d 6036 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( vol * `  ( A  i^i  ( B [,] y ) ) )  +  ( vol
* `  ( y [,] z ) ) )  =  ( ( vol
* `  ( A  i^i  ( B [,] y
) ) )  +  ( z  -  y
) ) )
121119, 120breqtrd 4177 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol * `  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) ) )  <_  ( ( vol * `  ( A  i^i  ( B [,] y ) ) )  +  ( z  -  y ) ) )
122 ovollecl 19246 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) ) 
C_  RR  /\  (
( vol * `  ( A  i^i  ( B [,] y ) ) )  +  ( z  -  y ) )  e.  RR  /\  ( vol * `  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) ) )  <_  ( ( vol
* `  ( A  i^i  ( B [,] y
) ) )  +  ( z  -  y
) ) )  -> 
( vol * `  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) ) )  e.  RR )
123110, 114, 121, 122syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol * `  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) ) )  e.  RR )
12472adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  B  <_  y
)  ->  B  e.  RR )
12563adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  B  <_  y
)  ->  z  e.  RR )
12680adantr 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  B  <_  y
)  ->  y  e.  RR )
127 simpr 448 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  B  <_  y
)  ->  B  <_  y )
128100adantr 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  B  <_  y
)  ->  y  <_  z )
129 simp2 958 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z )  ->  z  e.  RR )
130 elicc2 10907 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( B  e.  RR  /\  z  e.  RR )  ->  ( y  e.  ( B [,] z )  <-> 
( y  e.  RR  /\  B  <_  y  /\  y  <_  z ) ) )
13171, 129, 130syl2an 464 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( y  e.  ( B [,] z )  <-> 
( y  e.  RR  /\  B  <_  y  /\  y  <_  z ) ) )
132131adantr 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  B  <_  y
)  ->  ( y  e.  ( B [,] z
)  <->  ( y  e.  RR  /\  B  <_ 
y  /\  y  <_  z ) ) )
133126, 127, 128, 132mpbir3and 1137 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  B  <_  y
)  ->  y  e.  ( B [,] z ) )
134 iccsplit 10961 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  e.  RR  /\  z  e.  RR  /\  y  e.  ( B [,] z
) )  ->  ( B [,] z )  =  ( ( B [,] y )  u.  (
y [,] z ) ) )
135124, 125, 133, 134syl3anc 1184 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  B  <_  y
)  ->  ( B [,] z )  =  ( ( B [,] y
)  u.  ( y [,] z ) ) )
136 eqimss 3343 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B [,] z )  =  ( ( B [,] y )  u.  ( y [,] z
) )  ->  ( B [,] z )  C_  ( ( B [,] y )  u.  (
y [,] z ) ) )
137135, 136syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  B  <_  y
)  ->  ( B [,] z )  C_  (
( B [,] y
)  u.  ( y [,] z ) ) )
13880adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  y  <_  B
)  ->  y  e.  RR )
13963adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  y  <_  B
)  ->  z  e.  RR )
140 simpr 448 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  y  <_  B
)  ->  y  <_  B )
141139leidd 9525 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  y  <_  B
)  ->  z  <_  z )
142 iccss 10910 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  e.  RR  /\  z  e.  RR )  /\  ( y  <_  B  /\  z  <_  z
) )  ->  ( B [,] z )  C_  ( y [,] z
) )
143138, 139, 140, 141, 142syl22anc 1185 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  y  <_  B
)  ->  ( B [,] z )  C_  (
y [,] z ) )
144 ssun4 3456 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B [,] z ) 
C_  ( y [,] z )  ->  ( B [,] z )  C_  ( ( B [,] y )  u.  (
y [,] z ) ) )
145143, 144syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  /\  y  <_  B
)  ->  ( B [,] z )  C_  (
( B [,] y
)  u.  ( y [,] z ) ) )
14672, 80, 137, 145lecasei 9112 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( B [,] z
)  C_  ( ( B [,] y )  u.  ( y [,] z
) ) )
147 sslin 3510 . . . . . . . . . . . . . . . . 17  |-  ( ( B [,] z ) 
C_  ( ( B [,] y )  u.  ( y [,] z
) )  ->  ( A  i^i  ( B [,] z ) )  C_  ( A  i^i  (
( B [,] y
)  u.  ( y [,] z ) ) ) )
148146, 147syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( A  i^i  ( B [,] z ) ) 
C_  ( A  i^i  ( ( B [,] y )  u.  (
y [,] z ) ) ) )
149 indi 3530 . . . . . . . . . . . . . . . . 17  |-  ( A  i^i  ( ( B [,] y )  u.  ( y [,] z
) ) )  =  ( ( A  i^i  ( B [,] y ) )  u.  ( A  i^i  ( y [,] z ) ) )
150 inss2 3505 . . . . . . . . . . . . . . . . . 18  |-  ( A  i^i  ( y [,] z ) )  C_  ( y [,] z
)
151 unss2 3461 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  i^i  ( y [,] z ) ) 
C_  ( y [,] z )  ->  (
( A  i^i  ( B [,] y ) )  u.  ( A  i^i  ( y [,] z
) ) )  C_  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) ) )
152150, 151ax-mp 8 . . . . . . . . . . . . . . . . 17  |-  ( ( A  i^i  ( B [,] y ) )  u.  ( A  i^i  ( y [,] z
) ) )  C_  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) )
153149, 152eqsstri 3321 . . . . . . . . . . . . . . . 16  |-  ( A  i^i  ( ( B [,] y )  u.  ( y [,] z
) ) )  C_  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) )
154148, 153syl6ss 3303 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( A  i^i  ( B [,] z ) ) 
C_  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z
) ) )
155 ovolss 19248 . . . . . . . . . . . . . . 15  |-  ( ( ( A  i^i  ( B [,] z ) ) 
C_  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z
) )  /\  (
( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) )  C_  RR )  ->  ( vol
* `  ( A  i^i  ( B [,] z
) ) )  <_ 
( vol * `  ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z ) ) ) )
156154, 110, 155syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol * `  ( A  i^i  ( B [,] z ) ) )  <_  ( vol * `
 ( ( A  i^i  ( B [,] y ) )  u.  ( y [,] z
) ) ) )
15798, 123, 114, 156, 121letrd 9159 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol * `  ( A  i^i  ( B [,] z ) ) )  <_  ( ( vol * `  ( A  i^i  ( B [,] y ) ) )  +  ( z  -  y ) ) )
15898, 112, 113lesubadd2d 9557 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( ( vol
* `  ( A  i^i  ( B [,] z
) ) )  -  ( vol * `  ( A  i^i  ( B [,] y ) ) ) )  <_  ( z  -  y )  <->  ( vol * `
 ( A  i^i  ( B [,] z ) ) )  <_  (
( vol * `  ( A  i^i  ( B [,] y ) ) )  +  ( z  -  y ) ) ) )
159157, 158mpbird 224 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( vol * `  ( A  i^i  ( B [,] z ) ) )  -  ( vol
* `  ( A  i^i  ( B [,] y
) ) ) )  <_  ( z  -  y ) )
16095, 159eqbrtrd 4173 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( F `  z )  -  ( F `  y )
)  <_  ( z  -  y ) )
16197, 111resubcld 9397 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( F `  z )  -  ( F `  y )
)  e.  RR )
162 simplr 732 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
e  e.  RR+ )
163162rpred 10580 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
e  e.  RR )
164 lelttr 9098 . . . . . . . . . . . 12  |-  ( ( ( ( F `  z )  -  ( F `  y )
)  e.  RR  /\  ( z  -  y
)  e.  RR  /\  e  e.  RR )  ->  ( ( ( ( F `  z )  -  ( F `  y ) )  <_ 
( z  -  y
)  /\  ( z  -  y )  < 
e )  ->  (
( F `  z
)  -  ( F `
 y ) )  <  e ) )
165161, 113, 163, 164syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( ( ( F `  z )  -  ( F `  y ) )  <_ 
( z  -  y
)  /\  ( z  -  y )  < 
e )  ->  (
( F `  z
)  -  ( F `
 y ) )  <  e ) )
166160, 165mpand 657 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( z  -  y )  <  e  ->  ( ( F `  z )  -  ( F `  y )
)  <  e )
)
167 abssubge0 12058 . . . . . . . . . . . 12  |-  ( ( y  e.  RR  /\  z  e.  RR  /\  y  <_  z )  ->  ( abs `  ( z  -  y ) )  =  ( z  -  y
) )
168167adantl 453 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( abs `  (
z  -  y ) )  =  ( z  -  y ) )
169168breq1d 4163 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( abs `  (
z  -  y ) )  <  e  <->  ( z  -  y )  < 
e ) )
170 ovolss 19248 . . . . . . . . . . . . . 14  |-  ( ( ( A  i^i  ( B [,] y ) ) 
C_  ( A  i^i  ( B [,] z ) )  /\  ( A  i^i  ( B [,] z ) )  C_  RR )  ->  ( vol
* `  ( A  i^i  ( B [,] y
) ) )  <_ 
( vol * `  ( A  i^i  ( B [,] z ) ) ) )
171104, 106, 170syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( vol * `  ( A  i^i  ( B [,] y ) ) )  <_  ( vol * `
 ( A  i^i  ( B [,] z ) ) ) )
172171, 94, 793brtr4d 4183 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( F `  y
)  <_  ( F `  z ) )
173111, 97, 172abssubge0d 12161 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  =  ( ( F `  z )  -  ( F `  y ) ) )
174173breq1d 4163 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e  <->  ( ( F `  z )  -  ( F `  y ) )  < 
e ) )
175166, 169, 1743imtr4d 260 . . . . . . . . 9  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR  /\  y  <_  z ) )  -> 
( ( abs `  (
z  -  y ) )  <  e  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) )
17632, 42, 44, 62, 175wlogle 9492 . . . . . . . 8  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  (
y  e.  RR  /\  z  e.  RR )
)  ->  ( ( abs `  ( z  -  y ) )  < 
e  ->  ( abs `  ( ( F `  z )  -  ( F `  y )
) )  <  e
) )
177176anassrs 630 . . . . . . 7  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  y  e.  RR )  /\  z  e.  RR )  ->  ( ( abs `  ( z  -  y
) )  <  e  ->  ( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) )
178177ralrimiva 2732 . . . . . 6  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  RR )  /\  e  e.  RR+ )  /\  y  e.  RR )  ->  A. z  e.  RR  ( ( abs `  ( z  -  y
) )  <  e  ->  ( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) )
179178anasss 629 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  ( e  e.  RR+  /\  y  e.  RR ) )  ->  A. z  e.  RR  ( ( abs `  ( z  -  y
) )  <  e  ->  ( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) )
180179ancom2s 778 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  ( y  e.  RR  /\  e  e.  RR+ ) )  ->  A. z  e.  RR  ( ( abs `  ( z  -  y
) )  <  e  ->  ( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) )
181 breq2 4157 . . . . . . 7  |-  ( d  =  e  ->  (
( abs `  (
z  -  y ) )  <  d  <->  ( abs `  ( z  -  y
) )  <  e
) )
182181imbi1d 309 . . . . . 6  |-  ( d  =  e  ->  (
( ( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e )  <-> 
( ( abs `  (
z  -  y ) )  <  e  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) ) )
183182ralbidv 2669 . . . . 5  |-  ( d  =  e  ->  ( A. z  e.  RR  ( ( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e )  <->  A. z  e.  RR  ( ( abs `  (
z  -  y ) )  <  e  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) ) )
184183rspcev 2995 . . . 4  |-  ( ( e  e.  RR+  /\  A. z  e.  RR  (
( abs `  (
z  -  y ) )  <  e  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) )  ->  E. d  e.  RR+  A. z  e.  RR  ( ( abs `  ( z  -  y
) )  <  d  ->  ( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) )
18522, 180, 184syl2anc 643 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR )  /\  ( y  e.  RR  /\  e  e.  RR+ ) )  ->  E. d  e.  RR+  A. z  e.  RR  ( ( abs `  ( z  -  y
) )  <  d  ->  ( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) )
186185ralrimivva 2741 . 2  |-  ( ( A  e.  dom  vol  /\  B  e.  RR )  ->  A. y  e.  RR  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  RR  ( ( abs `  ( z  -  y
) )  <  d  ->  ( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) )
187 ax-resscn 8980 . . 3  |-  RR  C_  CC
188 elcncf2 18791 . . 3  |-  ( ( RR  C_  CC  /\  RR  C_  CC )  ->  ( F  e.  ( RR -cn-> RR )  <->  ( F : RR
--> RR  /\  A. y  e.  RR  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  RR  (
( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) ) ) )
189187, 187, 188mp2an 654 . 2  |-  ( F  e.  ( RR -cn-> RR )  <->  ( F : RR
--> RR  /\  A. y  e.  RR  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  RR  (
( abs `  (
z  -  y ) )  <  d  -> 
( abs `  (
( F `  z
)  -  ( F `
 y ) ) )  <  e ) ) )
19021, 186, 189sylanbrc 646 1  |-  ( ( A  e.  dom  vol  /\  B  e.  RR )  ->  F  e.  ( RR -cn-> RR ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2649   E.wrex 2650    u. cun 3261    i^i cin 3262    C_ wss 3263   class class class wbr 4153    e. cmpt 4207   dom cdm 4818   -->wf 5390   ` cfv 5394  (class class class)co 6020   CCcc 8921   RRcr 8922    + caddc 8926    < clt 9053    <_ cle 9054    - cmin 9223   RR+crp 10544   [,]cicc 10851   abscabs 11966   -cn->ccncf 18777   vol *covol 19226   volcvol 19227
This theorem is referenced by:  volivth  19366
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-of 6244  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-2o 6661  df-oadd 6664  df-er 6841  df-map 6956  df-pm 6957  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-fi 7351  df-sup 7381  df-oi 7412  df-card 7759  df-cda 7981  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-n0 10154  df-z 10215  df-uz 10421  df-q 10507  df-rp 10545  df-xneg 10642  df-xadd 10643  df-xmul 10644  df-ioo 10852  df-ico 10854  df-icc 10855  df-fz 10976  df-fzo 11066  df-fl 11129  df-seq 11251  df-exp 11310  df-hash 11546  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-clim 12209  df-rlim 12210  df-sum 12407  df-rest 13577  df-topgen 13594  df-xmet 16619  df-met 16620  df-bl 16621  df-mopn 16622  df-top 16886  df-bases 16888  df-topon 16889  df-cmp 17372  df-cncf 18779  df-ovol 19228  df-vol 19229
  Copyright terms: Public domain W3C validator