MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volivth Unicode version

Theorem volivth 18924
Description: The Intermediate Value Theorem for the Lebesgue volume function. For any positive  B  <_  ( vol `  A ), there is a measurable subset of  A whose volume is  B. (Contributed by Mario Carneiro, 30-Aug-2014.)
Assertion
Ref Expression
volivth  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  ->  E. x  e.  dom  vol ( x  C_  A  /\  ( vol `  x
)  =  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem volivth
StepHypRef Expression
1 simpll 733 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  <  ( vol `  A ) )  ->  A  e.  dom  vol )
2 mnfxr 10423 . . . . . 6  |-  -oo  e.  RR*
32a1i 12 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  <  ( vol `  A ) )  ->  -oo  e.  RR* )
4 iccssxr 10698 . . . . . . 7  |-  ( 0 [,] ( vol `  A
) )  C_  RR*
5 simpr 449 . . . . . . 7  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  ->  B  e.  ( 0 [,] ( vol `  A
) ) )
64, 5sseldi 3153 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  ->  B  e.  RR* )
76adantr 453 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  <  ( vol `  A ) )  ->  B  e.  RR* )
8 iccssxr 10698 . . . . . . . 8  |-  ( 0 [,]  +oo )  C_  RR*
9 volf 18850 . . . . . . . . 9  |-  vol : dom  vol --> ( 0 [,] 
+oo )
109ffvelrni 5598 . . . . . . . 8  |-  ( A  e.  dom  vol  ->  ( vol `  A )  e.  ( 0 [,] 
+oo ) )
118, 10sseldi 3153 . . . . . . 7  |-  ( A  e.  dom  vol  ->  ( vol `  A )  e.  RR* )
1211adantr 453 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  -> 
( vol `  A
)  e.  RR* )
1312adantr 453 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  <  ( vol `  A ) )  ->  ( vol `  A
)  e.  RR* )
14 0xr 8846 . . . . . . . . . 10  |-  0  e.  RR*
15 elicc1 10666 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  ( vol `  A )  e. 
RR* )  ->  ( B  e.  ( 0 [,] ( vol `  A
) )  <->  ( B  e.  RR*  /\  0  <_  B  /\  B  <_  ( vol `  A ) ) ) )
1614, 12, 15sylancr 647 . . . . . . . . 9  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  -> 
( B  e.  ( 0 [,] ( vol `  A ) )  <->  ( B  e.  RR*  /\  0  <_  B  /\  B  <_  ( vol `  A ) ) ) )
175, 16mpbid 203 . . . . . . . 8  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  -> 
( B  e.  RR*  /\  0  <_  B  /\  B  <_  ( vol `  A
) ) )
1817simp2d 973 . . . . . . 7  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  -> 
0  <_  B )
1918adantr 453 . . . . . 6  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  <  ( vol `  A ) )  ->  0  <_  B
)
20 0re 8806 . . . . . . . . 9  |-  0  e.  RR
21 mnflt 10431 . . . . . . . . 9  |-  ( 0  e.  RR  ->  -oo  <  0 )
2220, 21ax-mp 10 . . . . . . . 8  |-  -oo  <  0
23 xrltletr 10455 . . . . . . . 8  |-  ( ( 
-oo  e.  RR*  /\  0  e.  RR*  /\  B  e. 
RR* )  ->  (
(  -oo  <  0  /\  0  <_  B )  ->  -oo  <  B ) )
2422, 23mpani 660 . . . . . . 7  |-  ( ( 
-oo  e.  RR*  /\  0  e.  RR*  /\  B  e. 
RR* )  ->  (
0  <_  B  ->  -oo 
<  B ) )
252, 14, 24mp3an12 1272 . . . . . 6  |-  ( B  e.  RR*  ->  ( 0  <_  B  ->  -oo  <  B ) )
267, 19, 25sylc 58 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  <  ( vol `  A ) )  ->  -oo  <  B )
27 simpr 449 . . . . 5  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  <  ( vol `  A ) )  ->  B  <  ( vol `  A ) )
28 xrre2 10466 . . . . 5  |-  ( ( (  -oo  e.  RR*  /\  B  e.  RR*  /\  ( vol `  A )  e. 
RR* )  /\  (  -oo  <  B  /\  B  <  ( vol `  A
) ) )  ->  B  e.  RR )
293, 7, 13, 26, 27, 28syl32anc 1195 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  <  ( vol `  A ) )  ->  B  e.  RR )
30 volsup2 18922 . . . 4  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  E. n  e.  NN  B  <  ( vol `  ( A  i^i  ( -u n [,] n
) ) ) )
311, 29, 27, 30syl3anc 1187 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  <  ( vol `  A ) )  ->  E. n  e.  NN  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) )
32 nnre 9721 . . . . . . . . 9  |-  ( n  e.  NN  ->  n  e.  RR )
3332ad2antrl 711 . . . . . . . 8  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  n  e.  RR )
3433renegcld 9178 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  -u n  e.  RR )
3529adantr 453 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  B  e.  RR )
3620a1i 12 . . . . . . . 8  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  0  e.  RR )
37 nngt0 9743 . . . . . . . . . 10  |-  ( n  e.  NN  ->  0  <  n )
3837ad2antrl 711 . . . . . . . . 9  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  0  <  n )
3933lt0neg2d 9311 . . . . . . . . 9  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  (
0  <  n  <->  -u n  <  0 ) )
4038, 39mpbid 203 . . . . . . . 8  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  -u n  <  0 )
4134, 36, 33, 40, 38lttrd 8945 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  -u n  <  n )
42 iccssre 10697 . . . . . . . 8  |-  ( (
-u n  e.  RR  /\  n  e.  RR )  ->  ( -u n [,] n )  C_  RR )
4334, 33, 42syl2anc 645 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( -u n [,] n ) 
C_  RR )
44 ax-resscn 8762 . . . . . . . . 9  |-  RR  C_  CC
45 ssid 3172 . . . . . . . . 9  |-  CC  C_  CC
46 cncfss 18365 . . . . . . . . 9  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  ( RR -cn-> RR )  C_  ( RR -cn-> CC ) )
4744, 45, 46mp2an 656 . . . . . . . 8  |-  ( RR
-cn-> RR )  C_  ( RR -cn-> CC )
481adantr 453 . . . . . . . . 9  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  A  e.  dom  vol )
49 eqid 2258 . . . . . . . . . 10  |-  ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) )  =  ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) )
5049volcn 18923 . . . . . . . . 9  |-  ( ( A  e.  dom  vol  /\  -u n  e.  RR )  ->  ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) )  e.  ( RR
-cn-> RR ) )
5148, 34, 50syl2anc 645 . . . . . . . 8  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  (
y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) )  e.  ( RR
-cn-> RR ) )
5247, 51sseldi 3153 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  (
y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) )  e.  ( RR
-cn-> CC ) )
5343sselda 3155 . . . . . . . 8  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  u  e.  ( -u n [,] n ) )  ->  u  e.  RR )
54 cncff 18359 . . . . . . . . . 10  |-  ( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) )  e.  ( RR
-cn-> RR )  ->  (
y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) : RR --> RR )
5551, 54syl 17 . . . . . . . . 9  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  (
y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) : RR --> RR )
56 ffvelrn 5597 . . . . . . . . 9  |-  ( ( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) : RR --> RR  /\  u  e.  RR )  ->  ( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  u )  e.  RR )
5755, 56sylan 459 . . . . . . . 8  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  u  e.  RR )  ->  (
( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  u )  e.  RR )
5853, 57syldan 458 . . . . . . 7  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  u  e.  ( -u n [,] n ) )  -> 
( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  u )  e.  RR )
59 oveq2 5800 . . . . . . . . . . . . . 14  |-  ( y  =  -u n  ->  ( -u n [,] y )  =  ( -u n [,] -u n ) )
6059ineq2d 3345 . . . . . . . . . . . . 13  |-  ( y  =  -u n  ->  ( A  i^i  ( -u n [,] y ) )  =  ( A  i^i  ( -u n [,] -u n
) ) )
6160fveq2d 5462 . . . . . . . . . . . 12  |-  ( y  =  -u n  ->  ( vol `  ( A  i^i  ( -u n [,] y
) ) )  =  ( vol `  ( A  i^i  ( -u n [,] -u n ) ) ) )
62 fvex 5472 . . . . . . . . . . . 12  |-  ( vol `  ( A  i^i  ( -u n [,] -u n
) ) )  e. 
_V
6361, 49, 62fvmpt 5536 . . . . . . . . . . 11  |-  ( -u n  e.  RR  ->  ( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  -u n
)  =  ( vol `  ( A  i^i  ( -u n [,] -u n
) ) ) )
6434, 63syl 17 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  (
( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  -u n
)  =  ( vol `  ( A  i^i  ( -u n [,] -u n
) ) ) )
65 inss2 3365 . . . . . . . . . . . . . 14  |-  ( A  i^i  ( -u n [,] -u n ) ) 
C_  ( -u n [,] -u n )
6634rexrd 8849 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  -u n  e.  RR* )
67 iccid 10667 . . . . . . . . . . . . . . 15  |-  ( -u n  e.  RR*  ->  ( -u n [,] -u n
)  =  { -u n } )
6866, 67syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( -u n [,] -u n
)  =  { -u n } )
6965, 68syl5sseq 3201 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( A  i^i  ( -u n [,] -u n ) ) 
C_  { -u n } )
7034snssd 3734 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  { -u n }  C_  RR )
7169, 70sstrd 3164 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( A  i^i  ( -u n [,] -u n ) ) 
C_  RR )
72 ovolsn 18816 . . . . . . . . . . . . . 14  |-  ( -u n  e.  RR  ->  ( vol * `  { -u n } )  =  0 )
7334, 72syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( vol * `  { -u n } )  =  0 )
74 ovolssnul 18808 . . . . . . . . . . . . 13  |-  ( ( ( A  i^i  ( -u n [,] -u n
) )  C_  { -u n }  /\  { -u n }  C_  RR  /\  ( vol * `  { -u n } )  =  0 )  ->  ( vol * `  ( A  i^i  ( -u n [,] -u n ) ) )  =  0 )
7569, 70, 73, 74syl3anc 1187 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( vol * `  ( A  i^i  ( -u n [,] -u n ) ) )  =  0 )
76 nulmbl 18855 . . . . . . . . . . . 12  |-  ( ( ( A  i^i  ( -u n [,] -u n
) )  C_  RR  /\  ( vol * `  ( A  i^i  ( -u n [,] -u n
) ) )  =  0 )  ->  ( A  i^i  ( -u n [,] -u n ) )  e.  dom  vol )
7771, 75, 76syl2anc 645 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( A  i^i  ( -u n [,] -u n ) )  e.  dom  vol )
78 mblvol 18851 . . . . . . . . . . 11  |-  ( ( A  i^i  ( -u n [,] -u n ) )  e.  dom  vol  ->  ( vol `  ( A  i^i  ( -u n [,] -u n ) ) )  =  ( vol
* `  ( A  i^i  ( -u n [,] -u n ) ) ) )
7977, 78syl 17 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( vol `  ( A  i^i  ( -u n [,] -u n
) ) )  =  ( vol * `  ( A  i^i  ( -u n [,] -u n
) ) ) )
8064, 79, 753eqtrd 2294 . . . . . . . . 9  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  (
( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  -u n
)  =  0 )
8119adantr 453 . . . . . . . . 9  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  0  <_  B )
8280, 81eqbrtrd 4017 . . . . . . . 8  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  (
( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  -u n
)  <_  B )
83 simprr 736 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) )
847adantr 453 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  B  e.  RR* )
85 iccmbl 18885 . . . . . . . . . . . . . 14  |-  ( (
-u n  e.  RR  /\  n  e.  RR )  ->  ( -u n [,] n )  e.  dom  vol )
8634, 33, 85syl2anc 645 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( -u n [,] n )  e.  dom  vol )
87 inmbl 18861 . . . . . . . . . . . . 13  |-  ( ( A  e.  dom  vol  /\  ( -u n [,] n )  e.  dom  vol )  ->  ( A  i^i  ( -u n [,] n ) )  e. 
dom  vol )
8848, 86, 87syl2anc 645 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( A  i^i  ( -u n [,] n ) )  e. 
dom  vol )
899ffvelrni 5598 . . . . . . . . . . . . 13  |-  ( ( A  i^i  ( -u n [,] n ) )  e.  dom  vol  ->  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  e.  ( 0 [,] 
+oo ) )
908, 89sseldi 3153 . . . . . . . . . . . 12  |-  ( ( A  i^i  ( -u n [,] n ) )  e.  dom  vol  ->  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  e.  RR* )
9188, 90syl 17 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( vol `  ( A  i^i  ( -u n [,] n
) ) )  e. 
RR* )
92 xrltle 10450 . . . . . . . . . . 11  |-  ( ( B  e.  RR*  /\  ( vol `  ( A  i^i  ( -u n [,] n
) ) )  e. 
RR* )  ->  ( B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  ->  B  <_  ( vol `  ( A  i^i  ( -u n [,] n
) ) ) ) )
9384, 91, 92syl2anc 645 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  ->  B  <_  ( vol `  ( A  i^i  ( -u n [,] n
) ) ) ) )
9483, 93mpd 16 . . . . . . . . 9  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  B  <_  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) )
95 oveq2 5800 . . . . . . . . . . . . 13  |-  ( y  =  n  ->  ( -u n [,] y )  =  ( -u n [,] n ) )
9695ineq2d 3345 . . . . . . . . . . . 12  |-  ( y  =  n  ->  ( A  i^i  ( -u n [,] y ) )  =  ( A  i^i  ( -u n [,] n ) ) )
9796fveq2d 5462 . . . . . . . . . . 11  |-  ( y  =  n  ->  ( vol `  ( A  i^i  ( -u n [,] y
) ) )  =  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) )
98 fvex 5472 . . . . . . . . . . 11  |-  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  e.  _V
9997, 49, 98fvmpt 5536 . . . . . . . . . 10  |-  ( n  e.  RR  ->  (
( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  n )  =  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) )
10033, 99syl 17 . . . . . . . . 9  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  (
( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  n )  =  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) )
10194, 100breqtrrd 4023 . . . . . . . 8  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  B  <_  ( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  n ) )
10282, 101jca 520 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  (
( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  -u n
)  <_  B  /\  B  <_  ( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  n ) ) )
10334, 33, 35, 41, 43, 52, 58, 102ivthle 18778 . . . . . 6  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  E. z  e.  ( -u n [,] n ) ( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  z )  =  B )
10443sselda 3155 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  z  e.  ( -u n [,] n ) )  -> 
z  e.  RR )
105 oveq2 5800 . . . . . . . . . . . . 13  |-  ( y  =  z  ->  ( -u n [,] y )  =  ( -u n [,] z ) )
106105ineq2d 3345 . . . . . . . . . . . 12  |-  ( y  =  z  ->  ( A  i^i  ( -u n [,] y ) )  =  ( A  i^i  ( -u n [,] z ) ) )
107106fveq2d 5462 . . . . . . . . . . 11  |-  ( y  =  z  ->  ( vol `  ( A  i^i  ( -u n [,] y
) ) )  =  ( vol `  ( A  i^i  ( -u n [,] z ) ) ) )
108 fvex 5472 . . . . . . . . . . 11  |-  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  e.  _V
109107, 49, 108fvmpt 5536 . . . . . . . . . 10  |-  ( z  e.  RR  ->  (
( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  z )  =  ( vol `  ( A  i^i  ( -u n [,] z ) ) ) )
110104, 109syl 17 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  z  e.  ( -u n [,] n ) )  -> 
( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  z )  =  ( vol `  ( A  i^i  ( -u n [,] z ) ) ) )
111110eqeq1d 2266 . . . . . . . 8  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  z  e.  ( -u n [,] n ) )  -> 
( ( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  z )  =  B  <-> 
( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )
11248adantr 453 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  (
z  e.  ( -u n [,] n )  /\  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )  ->  A  e.  dom  vol )
11334adantr 453 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  (
z  e.  ( -u n [,] n )  /\  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )  ->  -u n  e.  RR )
114104adantrr 700 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  (
z  e.  ( -u n [,] n )  /\  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )  ->  z  e.  RR )
115 iccmbl 18885 . . . . . . . . . . . 12  |-  ( (
-u n  e.  RR  /\  z  e.  RR )  ->  ( -u n [,] z )  e.  dom  vol )
116113, 114, 115syl2anc 645 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  (
z  e.  ( -u n [,] n )  /\  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )  ->  ( -u n [,] z )  e.  dom  vol )
117 inmbl 18861 . . . . . . . . . . 11  |-  ( ( A  e.  dom  vol  /\  ( -u n [,] z )  e.  dom  vol )  ->  ( A  i^i  ( -u n [,] z ) )  e. 
dom  vol )
118112, 116, 117syl2anc 645 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  (
z  e.  ( -u n [,] n )  /\  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )  ->  ( A  i^i  ( -u n [,] z
) )  e.  dom  vol )
119 inss1 3364 . . . . . . . . . . 11  |-  ( A  i^i  ( -u n [,] z ) )  C_  A
120119a1i 12 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  (
z  e.  ( -u n [,] n )  /\  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )  ->  ( A  i^i  ( -u n [,] z
) )  C_  A
)
121 simprr 736 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  (
z  e.  ( -u n [,] n )  /\  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )  ->  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B )
122 sseq1 3174 . . . . . . . . . . . 12  |-  ( x  =  ( A  i^i  ( -u n [,] z
) )  ->  (
x  C_  A  <->  ( A  i^i  ( -u n [,] z ) )  C_  A ) )
123 fveq2 5458 . . . . . . . . . . . . 13  |-  ( x  =  ( A  i^i  ( -u n [,] z
) )  ->  ( vol `  x )  =  ( vol `  ( A  i^i  ( -u n [,] z ) ) ) )
124123eqeq1d 2266 . . . . . . . . . . . 12  |-  ( x  =  ( A  i^i  ( -u n [,] z
) )  ->  (
( vol `  x
)  =  B  <->  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )
125122, 124anbi12d 694 . . . . . . . . . . 11  |-  ( x  =  ( A  i^i  ( -u n [,] z
) )  ->  (
( x  C_  A  /\  ( vol `  x
)  =  B )  <-> 
( ( A  i^i  ( -u n [,] z
) )  C_  A  /\  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) ) )
126125rcla4ev 2859 . . . . . . . . . 10  |-  ( ( ( A  i^i  ( -u n [,] z ) )  e.  dom  vol  /\  ( ( A  i^i  ( -u n [,] z
) )  C_  A  /\  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )  ->  E. x  e.  dom  vol ( x  C_  A  /\  ( vol `  x
)  =  B ) )
127118, 120, 121, 126syl12anc 1185 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  (
z  e.  ( -u n [,] n )  /\  ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B ) )  ->  E. x  e.  dom  vol ( x  C_  A  /\  ( vol `  x
)  =  B ) )
128127expr 601 . . . . . . . 8  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  z  e.  ( -u n [,] n ) )  -> 
( ( vol `  ( A  i^i  ( -u n [,] z ) ) )  =  B  ->  E. x  e.  dom  vol ( x 
C_  A  /\  ( vol `  x )  =  B ) ) )
129111, 128sylbid 208 . . . . . . 7  |-  ( ( ( ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  /\  B  <  ( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  /\  z  e.  ( -u n [,] n ) )  -> 
( ( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  z )  =  B  ->  E. x  e.  dom  vol ( x  C_  A  /\  ( vol `  x
)  =  B ) ) )
130129rexlimdva 2642 . . . . . 6  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  ( E. z  e.  ( -u n [,] n ) ( ( y  e.  RR  |->  ( vol `  ( A  i^i  ( -u n [,] y ) ) ) ) `  z )  =  B  ->  E. x  e.  dom  vol ( x 
C_  A  /\  ( vol `  x )  =  B ) ) )
131103, 130mpd 16 . . . . 5  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  (
n  e.  NN  /\  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) ) )  ->  E. x  e.  dom  vol ( x 
C_  A  /\  ( vol `  x )  =  B ) )
132131expr 601 . . . 4  |-  ( ( ( ( A  e. 
dom  vol  /\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  < 
( vol `  A
) )  /\  n  e.  NN )  ->  ( B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  ->  E. x  e.  dom  vol ( x  C_  A  /\  ( vol `  x
)  =  B ) ) )
133132rexlimdva 2642 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  <  ( vol `  A ) )  ->  ( E. n  e.  NN  B  <  ( vol `  ( A  i^i  ( -u n [,] n
) ) )  ->  E. x  e.  dom  vol ( x  C_  A  /\  ( vol `  x
)  =  B ) ) )
13431, 133mpd 16 . 2  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  <  ( vol `  A ) )  ->  E. x  e.  dom  vol ( x  C_  A  /\  ( vol `  x
)  =  B ) )
135 simpll 733 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  =  ( vol `  A ) )  ->  A  e.  dom  vol )
136 ssid 3172 . . . 4  |-  A  C_  A
137136a1i 12 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  =  ( vol `  A ) )  ->  A  C_  A
)
138 simpr 449 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  =  ( vol `  A ) )  ->  B  =  ( vol `  A ) )
139138eqcomd 2263 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  =  ( vol `  A ) )  ->  ( vol `  A )  =  B )
140 sseq1 3174 . . . . 5  |-  ( x  =  A  ->  (
x  C_  A  <->  A  C_  A
) )
141 fveq2 5458 . . . . . 6  |-  ( x  =  A  ->  ( vol `  x )  =  ( vol `  A
) )
142141eqeq1d 2266 . . . . 5  |-  ( x  =  A  ->  (
( vol `  x
)  =  B  <->  ( vol `  A )  =  B ) )
143140, 142anbi12d 694 . . . 4  |-  ( x  =  A  ->  (
( x  C_  A  /\  ( vol `  x
)  =  B )  <-> 
( A  C_  A  /\  ( vol `  A
)  =  B ) ) )
144143rcla4ev 2859 . . 3  |-  ( ( A  e.  dom  vol  /\  ( A  C_  A  /\  ( vol `  A
)  =  B ) )  ->  E. x  e.  dom  vol ( x 
C_  A  /\  ( vol `  x )  =  B ) )
145135, 137, 139, 144syl12anc 1185 . 2  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  ( 0 [,] ( vol `  A ) ) )  /\  B  =  ( vol `  A ) )  ->  E. x  e.  dom  vol ( x 
C_  A  /\  ( vol `  x )  =  B ) )
14617simp3d 974 . . 3  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  ->  B  <_  ( vol `  A
) )
147 xrleloe 10445 . . . 4  |-  ( ( B  e.  RR*  /\  ( vol `  A )  e. 
RR* )  ->  ( B  <_  ( vol `  A
)  <->  ( B  < 
( vol `  A
)  \/  B  =  ( vol `  A
) ) ) )
1486, 12, 147syl2anc 645 . . 3  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  -> 
( B  <_  ( vol `  A )  <->  ( B  <  ( vol `  A
)  \/  B  =  ( vol `  A
) ) ) )
149146, 148mpbid 203 . 2  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  -> 
( B  <  ( vol `  A )  \/  B  =  ( vol `  A ) ) )
150134, 145, 149mpjaodan 764 1  |-  ( ( A  e.  dom  vol  /\  B  e.  ( 0 [,] ( vol `  A
) ) )  ->  E. x  e.  dom  vol ( x  C_  A  /\  ( vol `  x
)  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   E.wrex 2519    i^i cin 3126    C_ wss 3127   {csn 3614   class class class wbr 3997    e. cmpt 4051   dom cdm 4661   -->wf 4669   ` cfv 4673  (class class class)co 5792   CCcc 8703   RRcr 8704   0cc0 8705    +oocpnf 8832    -oocmnf 8833   RR*cxr 8834    < clt 8835    <_ cle 8836   -ucneg 9006   NNcn 9714   [,]cicc 10625   -cn->ccncf 18342   vol *covol 18784   volcvol 18785
This theorem is referenced by:  itg2const2  19058
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cc 8029  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-disj 3968  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-of 6012  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-2o 6448  df-oadd 6451  df-er 6628  df-map 6742  df-pm 6743  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-fi 7133  df-sup 7162  df-oi 7193  df-card 7540  df-cda 7762  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-n0 9933  df-z 9992  df-uz 10198  df-q 10284  df-rp 10322  df-xneg 10419  df-xadd 10420  df-xmul 10421  df-ioo 10626  df-ico 10628  df-icc 10629  df-fz 10749  df-fzo 10837  df-fl 10891  df-seq 11013  df-exp 11071  df-hash 11304  df-cj 11549  df-re 11550  df-im 11551  df-sqr 11685  df-abs 11686  df-clim 11927  df-rlim 11928  df-sum 12124  df-rest 13289  df-topgen 13306  df-xmet 16335  df-met 16336  df-bl 16337  df-mopn 16338  df-top 16598  df-bases 16600  df-topon 16601  df-cmp 17076  df-cncf 18344  df-ovol 18786  df-vol 18787
  Copyright terms: Public domain W3C validator