MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volsup2 Unicode version

Theorem volsup2 19365
Description: The volume of  A is the supremum of the sequence  vol * `  ( A  i^i  ( -u n [,] n ) ) of volumes of bounded sets. (Contributed by Mario Carneiro, 30-Aug-2014.)
Assertion
Ref Expression
volsup2  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  E. n  e.  NN  B  <  ( vol `  ( A  i^i  ( -u n [,] n
) ) ) )
Distinct variable groups:    A, n    B, n

Proof of Theorem volsup2
Dummy variables  m  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 959 . . . . 5  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  B  <  ( vol `  A
) )
2 rexr 9064 . . . . . . 7  |-  ( B  e.  RR  ->  B  e.  RR* )
323ad2ant2 979 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  B  e.  RR* )
4 iccssxr 10926 . . . . . . . 8  |-  ( 0 [,]  +oo )  C_  RR*
5 volf 19293 . . . . . . . . 9  |-  vol : dom  vol --> ( 0 [,] 
+oo )
65ffvelrni 5809 . . . . . . . 8  |-  ( A  e.  dom  vol  ->  ( vol `  A )  e.  ( 0 [,] 
+oo ) )
74, 6sseldi 3290 . . . . . . 7  |-  ( A  e.  dom  vol  ->  ( vol `  A )  e.  RR* )
873ad2ant1 978 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( vol `  A )  e. 
RR* )
9 xrltnle 9078 . . . . . 6  |-  ( ( B  e.  RR*  /\  ( vol `  A )  e. 
RR* )  ->  ( B  <  ( vol `  A
)  <->  -.  ( vol `  A )  <_  B
) )
103, 8, 9syl2anc 643 . . . . 5  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( B  <  ( vol `  A
)  <->  -.  ( vol `  A )  <_  B
) )
111, 10mpbid 202 . . . 4  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  -.  ( vol `  A )  <_  B )
12 negeq 9231 . . . . . . . . . . . . . 14  |-  ( m  =  n  ->  -u m  =  -u n )
13 id 20 . . . . . . . . . . . . . 14  |-  ( m  =  n  ->  m  =  n )
1412, 13oveq12d 6039 . . . . . . . . . . . . 13  |-  ( m  =  n  ->  ( -u m [,] m )  =  ( -u n [,] n ) )
1514ineq2d 3486 . . . . . . . . . . . 12  |-  ( m  =  n  ->  ( A  i^i  ( -u m [,] m ) )  =  ( A  i^i  ( -u n [,] n ) ) )
16 eqid 2388 . . . . . . . . . . . 12  |-  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) )  =  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) )
17 ovex 6046 . . . . . . . . . . . . 13  |-  ( -u n [,] n )  e. 
_V
1817inex2 4287 . . . . . . . . . . . 12  |-  ( A  i^i  ( -u n [,] n ) )  e. 
_V
1915, 16, 18fvmpt 5746 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `  n
)  =  ( A  i^i  ( -u n [,] n ) ) )
2019iuneq2i 4054 . . . . . . . . . 10  |-  U_ n  e.  NN  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n )  = 
U_ n  e.  NN  ( A  i^i  ( -u n [,] n ) )
21 iunin2 4097 . . . . . . . . . 10  |-  U_ n  e.  NN  ( A  i^i  ( -u n [,] n
) )  =  ( A  i^i  U_ n  e.  NN  ( -u n [,] n ) )
2220, 21eqtri 2408 . . . . . . . . 9  |-  U_ n  e.  NN  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n )  =  ( A  i^i  U_ n  e.  NN  ( -u n [,] n ) )
23 simpl1 960 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  A  e.  dom  vol )
24 nnre 9940 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  n  e.  RR )
2524adantl 453 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  n  e.  RR )
2625renegcld 9397 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  -> 
-u n  e.  RR )
27 iccmbl 19328 . . . . . . . . . . . . . 14  |-  ( (
-u n  e.  RR  /\  n  e.  RR )  ->  ( -u n [,] n )  e.  dom  vol )
2826, 25, 27syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( -u n [,] n )  e.  dom  vol )
29 inmbl 19304 . . . . . . . . . . . . 13  |-  ( ( A  e.  dom  vol  /\  ( -u n [,] n )  e.  dom  vol )  ->  ( A  i^i  ( -u n [,] n ) )  e. 
dom  vol )
3023, 28, 29syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( A  i^i  ( -u n [,] n ) )  e.  dom  vol )
3115cbvmptv 4242 . . . . . . . . . . . 12  |-  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) )  =  ( n  e.  NN  |->  ( A  i^i  ( -u n [,] n
) ) )
3230, 31fmptd 5833 . . . . . . . . . . 11  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  (
m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) : NN --> dom  vol )
33 ffn 5532 . . . . . . . . . . 11  |-  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) : NN --> dom  vol  ->  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) )  Fn  NN )
3432, 33syl 16 . . . . . . . . . 10  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  (
m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) )  Fn  NN )
35 fniunfv 5934 . . . . . . . . . 10  |-  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) )  Fn  NN  ->  U_ n  e.  NN  (
( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `  n
)  =  U. ran  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) )
3634, 35syl 16 . . . . . . . . 9  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  U_ n  e.  NN  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n )  = 
U. ran  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) )
37 mblss 19295 . . . . . . . . . . . . . . . 16  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
38373ad2ant1 978 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  A  C_  RR )
3938sselda 3292 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  x  e.  A )  ->  x  e.  RR )
40 recn 9014 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  RR  ->  x  e.  CC )
4140abscld 12166 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR  ->  ( abs `  x )  e.  RR )
42 arch 10151 . . . . . . . . . . . . . . . 16  |-  ( ( abs `  x )  e.  RR  ->  E. n  e.  NN  ( abs `  x
)  <  n )
4341, 42syl 16 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  E. n  e.  NN  ( abs `  x
)  <  n )
44 ltle 9097 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( abs `  x
)  e.  RR  /\  n  e.  RR )  ->  ( ( abs `  x
)  <  n  ->  ( abs `  x )  <_  n ) )
4541, 24, 44syl2an 464 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  n  e.  NN )  ->  ( ( abs `  x
)  <  n  ->  ( abs `  x )  <_  n ) )
46 id 20 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  RR  /\  -u n  <_  x  /\  x  <_  n )  -> 
( x  e.  RR  /\  -u n  <_  x  /\  x  <_  n ) )
47463expib 1156 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  RR  ->  (
( -u n  <_  x  /\  x  <_  n )  ->  ( x  e.  RR  /\  -u n  <_  x  /\  x  <_  n ) ) )
4847adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  n  e.  NN )  ->  ( ( -u n  <_  x  /\  x  <_  n )  ->  (
x  e.  RR  /\  -u n  <_  x  /\  x  <_  n ) ) )
49 absle 12047 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  RR  /\  n  e.  RR )  ->  ( ( abs `  x
)  <_  n  <->  ( -u n  <_  x  /\  x  <_  n ) ) )
5024, 49sylan2 461 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  n  e.  NN )  ->  ( ( abs `  x
)  <_  n  <->  ( -u n  <_  x  /\  x  <_  n ) ) )
5124adantl 453 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  RR  /\  n  e.  NN )  ->  n  e.  RR )
5251renegcld 9397 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  RR  /\  n  e.  NN )  -> 
-u n  e.  RR )
53 elicc2 10908 . . . . . . . . . . . . . . . . . . 19  |-  ( (
-u n  e.  RR  /\  n  e.  RR )  ->  ( x  e.  ( -u n [,] n )  <->  ( x  e.  RR  /\  -u n  <_  x  /\  x  <_  n ) ) )
5452, 51, 53syl2anc 643 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  n  e.  NN )  ->  ( x  e.  (
-u n [,] n
)  <->  ( x  e.  RR  /\  -u n  <_  x  /\  x  <_  n ) ) )
5548, 50, 543imtr4d 260 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  n  e.  NN )  ->  ( ( abs `  x
)  <_  n  ->  x  e.  ( -u n [,] n ) ) )
5645, 55syld 42 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  n  e.  NN )  ->  ( ( abs `  x
)  <  n  ->  x  e.  ( -u n [,] n ) ) )
5756reximdva 2762 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  ( E. n  e.  NN  ( abs `  x )  <  n  ->  E. n  e.  NN  x  e.  (
-u n [,] n
) ) )
5843, 57mpd 15 . . . . . . . . . . . . . 14  |-  ( x  e.  RR  ->  E. n  e.  NN  x  e.  (
-u n [,] n
) )
5939, 58syl 16 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  x  e.  A )  ->  E. n  e.  NN  x  e.  ( -u n [,] n ) )
6059ex 424 . . . . . . . . . . . 12  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  (
x  e.  A  ->  E. n  e.  NN  x  e.  ( -u n [,] n ) ) )
61 eliun 4040 . . . . . . . . . . . 12  |-  ( x  e.  U_ n  e.  NN  ( -u n [,] n )  <->  E. n  e.  NN  x  e.  (
-u n [,] n
) )
6260, 61syl6ibr 219 . . . . . . . . . . 11  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  (
x  e.  A  ->  x  e.  U_ n  e.  NN  ( -u n [,] n ) ) )
6362ssrdv 3298 . . . . . . . . . 10  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  A  C_ 
U_ n  e.  NN  ( -u n [,] n
) )
64 df-ss 3278 . . . . . . . . . 10  |-  ( A 
C_  U_ n  e.  NN  ( -u n [,] n
)  <->  ( A  i^i  U_ n  e.  NN  ( -u n [,] n ) )  =  A )
6563, 64sylib 189 . . . . . . . . 9  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( A  i^i  U_ n  e.  NN  ( -u n [,] n
) )  =  A )
6622, 36, 653eqtr3a 2444 . . . . . . . 8  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  U. ran  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) )  =  A )
6766fveq2d 5673 . . . . . . 7  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( vol `  U. ran  (
m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) )  =  ( vol `  A ) )
68 peano2re 9172 . . . . . . . . . . . . . 14  |-  ( n  e.  RR  ->  (
n  +  1 )  e.  RR )
6925, 68syl 16 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( n  +  1 )  e.  RR )
7069renegcld 9397 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  -> 
-u ( n  + 
1 )  e.  RR )
7125lep1d 9875 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  n  <_  ( n  +  1 ) )
7225, 69lenegd 9538 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( n  <_  (
n  +  1 )  <->  -u ( n  +  1 )  <_  -u n ) )
7371, 72mpbid 202 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  -> 
-u ( n  + 
1 )  <_  -u n
)
74 iccss 10911 . . . . . . . . . . . 12  |-  ( ( ( -u ( n  +  1 )  e.  RR  /\  ( n  +  1 )  e.  RR )  /\  ( -u ( n  +  1 )  <_  -u n  /\  n  <_  ( n  + 
1 ) ) )  ->  ( -u n [,] n )  C_  ( -u ( n  +  1 ) [,] ( n  +  1 ) ) )
7570, 69, 73, 71, 74syl22anc 1185 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( -u n [,] n )  C_  ( -u ( n  +  1 ) [,] ( n  +  1 ) ) )
76 sslin 3511 . . . . . . . . . . 11  |-  ( (
-u n [,] n
)  C_  ( -u (
n  +  1 ) [,] ( n  + 
1 ) )  -> 
( A  i^i  ( -u n [,] n ) )  C_  ( A  i^i  ( -u ( n  +  1 ) [,] ( n  +  1 ) ) ) )
7775, 76syl 16 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( A  i^i  ( -u n [,] n ) )  C_  ( A  i^i  ( -u ( n  +  1 ) [,] ( n  +  1 ) ) ) )
7819adantl 453 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) `  n )  =  ( A  i^i  ( -u n [,] n ) ) )
79 peano2nn 9945 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
n  +  1 )  e.  NN )
8079adantl 453 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( n  +  1 )  e.  NN )
81 negeq 9231 . . . . . . . . . . . . . 14  |-  ( m  =  ( n  + 
1 )  ->  -u m  =  -u ( n  + 
1 ) )
82 id 20 . . . . . . . . . . . . . 14  |-  ( m  =  ( n  + 
1 )  ->  m  =  ( n  + 
1 ) )
8381, 82oveq12d 6039 . . . . . . . . . . . . 13  |-  ( m  =  ( n  + 
1 )  ->  ( -u m [,] m )  =  ( -u (
n  +  1 ) [,] ( n  + 
1 ) ) )
8483ineq2d 3486 . . . . . . . . . . . 12  |-  ( m  =  ( n  + 
1 )  ->  ( A  i^i  ( -u m [,] m ) )  =  ( A  i^i  ( -u ( n  +  1 ) [,] ( n  +  1 ) ) ) )
85 ovex 6046 . . . . . . . . . . . . 13  |-  ( -u ( n  +  1
) [,] ( n  +  1 ) )  e.  _V
8685inex2 4287 . . . . . . . . . . . 12  |-  ( A  i^i  ( -u (
n  +  1 ) [,] ( n  + 
1 ) ) )  e.  _V
8784, 16, 86fvmpt 5746 . . . . . . . . . . 11  |-  ( ( n  +  1 )  e.  NN  ->  (
( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `  (
n  +  1 ) )  =  ( A  i^i  ( -u (
n  +  1 ) [,] ( n  + 
1 ) ) ) )
8880, 87syl 16 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) `  ( n  +  1
) )  =  ( A  i^i  ( -u ( n  +  1
) [,] ( n  +  1 ) ) ) )
8977, 78, 883sstr4d 3335 . . . . . . . . 9  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) `  n )  C_  (
( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `  (
n  +  1 ) ) )
9089ralrimiva 2733 . . . . . . . 8  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  A. n  e.  NN  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n )  C_  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) `  ( n  +  1
) ) )
91 volsup 19318 . . . . . . . 8  |-  ( ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) : NN --> dom  vol  /\  A. n  e.  NN  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n )  C_  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) `  ( n  +  1
) ) )  -> 
( vol `  U. ran  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) )  =  sup ( ( vol " ran  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) ) ,  RR* ,  <  )
)
9232, 90, 91syl2anc 643 . . . . . . 7  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( vol `  U. ran  (
m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) )  =  sup ( ( vol " ran  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ) , 
RR* ,  <  ) )
9367, 92eqtr3d 2422 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( vol `  A )  =  sup ( ( vol " ran  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) ) ,  RR* ,  <  )
)
9493breq1d 4164 . . . . 5  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  (
( vol `  A
)  <_  B  <->  sup (
( vol " ran  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ) , 
RR* ,  <  )  <_  B ) )
95 imassrn 5157 . . . . . . 7  |-  ( vol " ran  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) ) 
C_  ran  vol
96 frn 5538 . . . . . . . . 9  |-  ( vol
: dom  vol --> ( 0 [,]  +oo )  ->  ran  vol  C_  ( 0 [,]  +oo ) )
975, 96ax-mp 8 . . . . . . . 8  |-  ran  vol  C_  ( 0 [,]  +oo )
9897, 4sstri 3301 . . . . . . 7  |-  ran  vol  C_ 
RR*
9995, 98sstri 3301 . . . . . 6  |-  ( vol " ran  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) ) 
C_  RR*
100 supxrleub 10838 . . . . . 6  |-  ( ( ( vol " ran  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) )  C_  RR* 
/\  B  e.  RR* )  ->  ( sup (
( vol " ran  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ) , 
RR* ,  <  )  <_  B 
<-> 
A. n  e.  ( vol " ran  (
m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ) n  <_  B ) )
10199, 3, 100sylancr 645 . . . . 5  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( sup ( ( vol " ran  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ) , 
RR* ,  <  )  <_  B 
<-> 
A. n  e.  ( vol " ran  (
m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ) n  <_  B ) )
102 ffn 5532 . . . . . . . 8  |-  ( vol
: dom  vol --> ( 0 [,]  +oo )  ->  vol  Fn 
dom  vol )
1035, 102ax-mp 8 . . . . . . 7  |-  vol  Fn  dom  vol
104 frn 5538 . . . . . . . 8  |-  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) : NN --> dom  vol  ->  ran  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) )  C_  dom  vol )
10532, 104syl 16 . . . . . . 7  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ran  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) )  C_  dom  vol )
106 breq1 4157 . . . . . . . 8  |-  ( n  =  ( vol `  z
)  ->  ( n  <_  B  <->  ( vol `  z
)  <_  B )
)
107106ralima 5918 . . . . . . 7  |-  ( ( vol  Fn  dom  vol  /\ 
ran  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) )  C_  dom  vol )  ->  ( A. n  e.  ( vol " ran  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ) n  <_  B  <->  A. z  e.  ran  (
m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ( vol `  z
)  <_  B )
)
108103, 105, 107sylancr 645 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( A. n  e.  ( vol " ran  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ) n  <_  B  <->  A. z  e.  ran  (
m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ( vol `  z
)  <_  B )
)
109 fveq2 5669 . . . . . . . . . 10  |-  ( z  =  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n )  -> 
( vol `  z
)  =  ( vol `  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) `  n ) ) )
110109breq1d 4164 . . . . . . . . 9  |-  ( z  =  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n )  -> 
( ( vol `  z
)  <_  B  <->  ( vol `  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) `  n ) )  <_  B ) )
111110ralrn 5813 . . . . . . . 8  |-  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) )  Fn  NN  ->  ( A. z  e.  ran  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ( vol `  z )  <_  B  <->  A. n  e.  NN  ( vol `  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n ) )  <_  B ) )
11234, 111syl 16 . . . . . . 7  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( A. z  e.  ran  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ( vol `  z )  <_  B  <->  A. n  e.  NN  ( vol `  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n ) )  <_  B ) )
11319fveq2d 5673 . . . . . . . . 9  |-  ( n  e.  NN  ->  ( vol `  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n ) )  =  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) )
114113breq1d 4164 . . . . . . . 8  |-  ( n  e.  NN  ->  (
( vol `  (
( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `  n
) )  <_  B  <->  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  <_  B ) )
115114ralbiia 2682 . . . . . . 7  |-  ( A. n  e.  NN  ( vol `  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n ) )  <_  B  <->  A. n  e.  NN  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  <_  B )
116112, 115syl6bb 253 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( A. z  e.  ran  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ( vol `  z )  <_  B  <->  A. n  e.  NN  ( vol `  ( A  i^i  ( -u n [,] n
) ) )  <_  B ) )
117108, 116bitrd 245 . . . . 5  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( A. n  e.  ( vol " ran  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ) n  <_  B  <->  A. n  e.  NN  ( vol `  ( A  i^i  ( -u n [,] n
) ) )  <_  B ) )
11894, 101, 1173bitrd 271 . . . 4  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  (
( vol `  A
)  <_  B  <->  A. n  e.  NN  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  <_  B ) )
11911, 118mtbid 292 . . 3  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  -.  A. n  e.  NN  ( vol `  ( A  i^i  ( -u n [,] n
) ) )  <_  B )
120 rexnal 2661 . . 3  |-  ( E. n  e.  NN  -.  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  <_  B  <->  -.  A. n  e.  NN  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  <_  B )
121119, 120sylibr 204 . 2  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  E. n  e.  NN  -.  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  <_  B
)
1223adantr 452 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  B  e.  RR* )
1235ffvelrni 5809 . . . . . 6  |-  ( ( A  i^i  ( -u n [,] n ) )  e.  dom  vol  ->  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  e.  ( 0 [,] 
+oo ) )
1244, 123sseldi 3290 . . . . 5  |-  ( ( A  i^i  ( -u n [,] n ) )  e.  dom  vol  ->  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  e.  RR* )
12530, 124syl 16 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  e.  RR* )
126 xrltnle 9078 . . . 4  |-  ( ( B  e.  RR*  /\  ( vol `  ( A  i^i  ( -u n [,] n
) ) )  e. 
RR* )  ->  ( B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  <->  -.  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  <_  B ) )
127122, 125, 126syl2anc 643 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( B  <  ( vol `  ( A  i^i  ( -u n [,] n
) ) )  <->  -.  ( vol `  ( A  i^i  ( -u n [,] n
) ) )  <_  B ) )
128127rexbidva 2667 . 2  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( E. n  e.  NN  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  <->  E. n  e.  NN  -.  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  <_  B ) )
129121, 128mpbird 224 1  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  E. n  e.  NN  B  <  ( vol `  ( A  i^i  ( -u n [,] n
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2650   E.wrex 2651    i^i cin 3263    C_ wss 3264   U.cuni 3958   U_ciun 4036   class class class wbr 4154    e. cmpt 4208   dom cdm 4819   ran crn 4820   "cima 4822    Fn wfn 5390   -->wf 5391   ` cfv 5395  (class class class)co 6021   supcsup 7381   RRcr 8923   0cc0 8924   1c1 8925    + caddc 8927    +oocpnf 9051   RR*cxr 9053    < clt 9054    <_ cle 9055   -ucneg 9225   NNcn 9933   [,]cicc 10852   abscabs 11967   volcvol 19228
This theorem is referenced by:  volivth  19367
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-inf2 7530  ax-cc 8249  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-disj 4125  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-se 4484  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-isom 5404  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-of 6245  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-2o 6662  df-oadd 6665  df-er 6842  df-map 6957  df-pm 6958  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-sup 7382  df-oi 7413  df-card 7760  df-cda 7982  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-n0 10155  df-z 10216  df-uz 10422  df-q 10508  df-rp 10546  df-xadd 10644  df-ioo 10853  df-ico 10855  df-icc 10856  df-fz 10977  df-fzo 11067  df-fl 11130  df-seq 11252  df-exp 11311  df-hash 11547  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-clim 12210  df-rlim 12211  df-sum 12408  df-xmet 16620  df-met 16621  df-ovol 19229  df-vol 19230
  Copyright terms: Public domain W3C validator