MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volsup2 Unicode version

Theorem volsup2 18956
Description: The volume of  A is the supremum of the sequence  vol * `  ( A  i^i  ( -u n [,] n ) ) of volumes of bounded sets. (Contributed by Mario Carneiro, 30-Aug-2014.)
Assertion
Ref Expression
volsup2  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  E. n  e.  NN  B  <  ( vol `  ( A  i^i  ( -u n [,] n
) ) ) )
Distinct variable groups:    A, n    B, n
Dummy variables  m  x  z are mutually distinct and distinct from all other variables.

Proof of Theorem volsup2
StepHypRef Expression
1 simp3 959 . . . . 5  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  B  <  ( vol `  A
) )
2 rexr 8874 . . . . . . 7  |-  ( B  e.  RR  ->  B  e.  RR* )
323ad2ant2 979 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  B  e.  RR* )
4 iccssxr 10728 . . . . . . . 8  |-  ( 0 [,]  +oo )  C_  RR*
5 volf 18884 . . . . . . . . 9  |-  vol : dom  vol --> ( 0 [,] 
+oo )
65ffvelrni 5627 . . . . . . . 8  |-  ( A  e.  dom  vol  ->  ( vol `  A )  e.  ( 0 [,] 
+oo ) )
74, 6sseldi 3181 . . . . . . 7  |-  ( A  e.  dom  vol  ->  ( vol `  A )  e.  RR* )
873ad2ant1 978 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( vol `  A )  e. 
RR* )
9 xrltnle 8888 . . . . . 6  |-  ( ( B  e.  RR*  /\  ( vol `  A )  e. 
RR* )  ->  ( B  <  ( vol `  A
)  <->  -.  ( vol `  A )  <_  B
) )
103, 8, 9syl2anc 644 . . . . 5  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( B  <  ( vol `  A
)  <->  -.  ( vol `  A )  <_  B
) )
111, 10mpbid 203 . . . 4  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  -.  ( vol `  A )  <_  B )
12 negeq 9041 . . . . . . . . . . . . . 14  |-  ( m  =  n  ->  -u m  =  -u n )
13 id 21 . . . . . . . . . . . . . 14  |-  ( m  =  n  ->  m  =  n )
1412, 13oveq12d 5839 . . . . . . . . . . . . 13  |-  ( m  =  n  ->  ( -u m [,] m )  =  ( -u n [,] n ) )
1514ineq2d 3373 . . . . . . . . . . . 12  |-  ( m  =  n  ->  ( A  i^i  ( -u m [,] m ) )  =  ( A  i^i  ( -u n [,] n ) ) )
16 eqid 2286 . . . . . . . . . . . 12  |-  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) )  =  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) )
17 ovex 5846 . . . . . . . . . . . . 13  |-  ( -u n [,] n )  e. 
_V
1817inex2 4159 . . . . . . . . . . . 12  |-  ( A  i^i  ( -u n [,] n ) )  e. 
_V
1915, 16, 18fvmpt 5565 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `  n
)  =  ( A  i^i  ( -u n [,] n ) ) )
2019iuneq2i 3926 . . . . . . . . . 10  |-  U_ n  e.  NN  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n )  = 
U_ n  e.  NN  ( A  i^i  ( -u n [,] n ) )
21 iunin2 3969 . . . . . . . . . 10  |-  U_ n  e.  NN  ( A  i^i  ( -u n [,] n
) )  =  ( A  i^i  U_ n  e.  NN  ( -u n [,] n ) )
2220, 21eqtri 2306 . . . . . . . . 9  |-  U_ n  e.  NN  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n )  =  ( A  i^i  U_ n  e.  NN  ( -u n [,] n ) )
23 simpl1 960 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  A  e.  dom  vol )
24 nnre 9750 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  n  e.  RR )
2524adantl 454 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  n  e.  RR )
2625renegcld 9207 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  -> 
-u n  e.  RR )
27 iccmbl 18919 . . . . . . . . . . . . . 14  |-  ( (
-u n  e.  RR  /\  n  e.  RR )  ->  ( -u n [,] n )  e.  dom  vol )
2826, 25, 27syl2anc 644 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( -u n [,] n )  e.  dom  vol )
29 inmbl 18895 . . . . . . . . . . . . 13  |-  ( ( A  e.  dom  vol  /\  ( -u n [,] n )  e.  dom  vol )  ->  ( A  i^i  ( -u n [,] n ) )  e. 
dom  vol )
3023, 28, 29syl2anc 644 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( A  i^i  ( -u n [,] n ) )  e.  dom  vol )
3115cbvmptv 4114 . . . . . . . . . . . 12  |-  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) )  =  ( n  e.  NN  |->  ( A  i^i  ( -u n [,] n
) ) )
3230, 31fmptd 5647 . . . . . . . . . . 11  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  (
m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) : NN --> dom  vol )
33 ffn 5356 . . . . . . . . . . 11  |-  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) : NN --> dom  vol  ->  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) )  Fn  NN )
3432, 33syl 17 . . . . . . . . . 10  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  (
m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) )  Fn  NN )
35 fniunfv 5736 . . . . . . . . . 10  |-  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) )  Fn  NN  ->  U_ n  e.  NN  (
( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `  n
)  =  U. ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) )
3634, 35syl 17 . . . . . . . . 9  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  U_ n  e.  NN  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n )  = 
U. ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) )
37 mblss 18886 . . . . . . . . . . . . . . . 16  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
38373ad2ant1 978 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  A  C_  RR )
3938sselda 3183 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  x  e.  A )  ->  x  e.  RR )
40 recn 8824 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  RR  ->  x  e.  CC )
4140abscld 11914 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR  ->  ( abs `  x )  e.  RR )
42 arch 9959 . . . . . . . . . . . . . . . 16  |-  ( ( abs `  x )  e.  RR  ->  E. n  e.  NN  ( abs `  x
)  <  n )
4341, 42syl 17 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  E. n  e.  NN  ( abs `  x
)  <  n )
44 ltle 8907 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( abs `  x
)  e.  RR  /\  n  e.  RR )  ->  ( ( abs `  x
)  <  n  ->  ( abs `  x )  <_  n ) )
4541, 24, 44syl2an 465 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  n  e.  NN )  ->  ( ( abs `  x
)  <  n  ->  ( abs `  x )  <_  n ) )
46 id 21 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  RR  /\  -u n  <_  x  /\  x  <_  n )  -> 
( x  e.  RR  /\  -u n  <_  x  /\  x  <_  n ) )
47463expib 1156 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  RR  ->  (
( -u n  <_  x  /\  x  <_  n )  ->  ( x  e.  RR  /\  -u n  <_  x  /\  x  <_  n ) ) )
4847adantr 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  n  e.  NN )  ->  ( ( -u n  <_  x  /\  x  <_  n )  ->  (
x  e.  RR  /\  -u n  <_  x  /\  x  <_  n ) ) )
49 absle 11795 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  RR  /\  n  e.  RR )  ->  ( ( abs `  x
)  <_  n  <->  ( -u n  <_  x  /\  x  <_  n ) ) )
5024, 49sylan2 462 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  n  e.  NN )  ->  ( ( abs `  x
)  <_  n  <->  ( -u n  <_  x  /\  x  <_  n ) ) )
5124adantl 454 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  RR  /\  n  e.  NN )  ->  n  e.  RR )
5251renegcld 9207 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  RR  /\  n  e.  NN )  -> 
-u n  e.  RR )
53 elicc2 10711 . . . . . . . . . . . . . . . . . . 19  |-  ( (
-u n  e.  RR  /\  n  e.  RR )  ->  ( x  e.  ( -u n [,] n )  <->  ( x  e.  RR  /\  -u n  <_  x  /\  x  <_  n ) ) )
5452, 51, 53syl2anc 644 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  n  e.  NN )  ->  ( x  e.  (
-u n [,] n
)  <->  ( x  e.  RR  /\  -u n  <_  x  /\  x  <_  n ) ) )
5548, 50, 543imtr4d 261 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  n  e.  NN )  ->  ( ( abs `  x
)  <_  n  ->  x  e.  ( -u n [,] n ) ) )
5645, 55syld 42 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  n  e.  NN )  ->  ( ( abs `  x
)  <  n  ->  x  e.  ( -u n [,] n ) ) )
5756reximdva 2658 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  ( E. n  e.  NN  ( abs `  x )  <  n  ->  E. n  e.  NN  x  e.  (
-u n [,] n
) ) )
5843, 57mpd 16 . . . . . . . . . . . . . 14  |-  ( x  e.  RR  ->  E. n  e.  NN  x  e.  (
-u n [,] n
) )
5939, 58syl 17 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  x  e.  A )  ->  E. n  e.  NN  x  e.  ( -u n [,] n ) )
6059ex 425 . . . . . . . . . . . 12  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  (
x  e.  A  ->  E. n  e.  NN  x  e.  ( -u n [,] n ) ) )
61 eliun 3912 . . . . . . . . . . . 12  |-  ( x  e.  U_ n  e.  NN  ( -u n [,] n )  <->  E. n  e.  NN  x  e.  (
-u n [,] n
) )
6260, 61syl6ibr 220 . . . . . . . . . . 11  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  (
x  e.  A  ->  x  e.  U_ n  e.  NN  ( -u n [,] n ) ) )
6362ssrdv 3188 . . . . . . . . . 10  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  A  C_ 
U_ n  e.  NN  ( -u n [,] n
) )
64 df-ss 3169 . . . . . . . . . 10  |-  ( A 
C_  U_ n  e.  NN  ( -u n [,] n
)  <->  ( A  i^i  U_ n  e.  NN  ( -u n [,] n ) )  =  A )
6563, 64sylib 190 . . . . . . . . 9  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( A  i^i  U_ n  e.  NN  ( -u n [,] n
) )  =  A )
6622, 36, 653eqtr3a 2342 . . . . . . . 8  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  U. ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) )  =  A )
6766fveq2d 5491 . . . . . . 7  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( vol `  U. ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) )  =  ( vol `  A ) )
68 peano2re 8982 . . . . . . . . . . . . . 14  |-  ( n  e.  RR  ->  (
n  +  1 )  e.  RR )
6925, 68syl 17 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( n  +  1 )  e.  RR )
7069renegcld 9207 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  -> 
-u ( n  + 
1 )  e.  RR )
7125lep1d 9685 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  n  <_  ( n  +  1 ) )
7225, 69lenegd 9348 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( n  <_  (
n  +  1 )  <->  -u ( n  +  1 )  <_  -u n ) )
7371, 72mpbid 203 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  -> 
-u ( n  + 
1 )  <_  -u n
)
74 iccss 10714 . . . . . . . . . . . 12  |-  ( ( ( -u ( n  +  1 )  e.  RR  /\  ( n  +  1 )  e.  RR )  /\  ( -u ( n  +  1 )  <_  -u n  /\  n  <_  ( n  + 
1 ) ) )  ->  ( -u n [,] n )  C_  ( -u ( n  +  1 ) [,] ( n  +  1 ) ) )
7570, 69, 73, 71, 74syl22anc 1185 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( -u n [,] n )  C_  ( -u ( n  +  1 ) [,] ( n  +  1 ) ) )
76 sslin 3398 . . . . . . . . . . 11  |-  ( (
-u n [,] n
)  C_  ( -u (
n  +  1 ) [,] ( n  + 
1 ) )  -> 
( A  i^i  ( -u n [,] n ) )  C_  ( A  i^i  ( -u ( n  +  1 ) [,] ( n  +  1 ) ) ) )
7775, 76syl 17 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( A  i^i  ( -u n [,] n ) )  C_  ( A  i^i  ( -u ( n  +  1 ) [,] ( n  +  1 ) ) ) )
7819adantl 454 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) `  n )  =  ( A  i^i  ( -u n [,] n ) ) )
79 peano2nn 9755 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
n  +  1 )  e.  NN )
8079adantl 454 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( n  +  1 )  e.  NN )
81 negeq 9041 . . . . . . . . . . . . . 14  |-  ( m  =  ( n  + 
1 )  ->  -u m  =  -u ( n  + 
1 ) )
82 id 21 . . . . . . . . . . . . . 14  |-  ( m  =  ( n  + 
1 )  ->  m  =  ( n  + 
1 ) )
8381, 82oveq12d 5839 . . . . . . . . . . . . 13  |-  ( m  =  ( n  + 
1 )  ->  ( -u m [,] m )  =  ( -u (
n  +  1 ) [,] ( n  + 
1 ) ) )
8483ineq2d 3373 . . . . . . . . . . . 12  |-  ( m  =  ( n  + 
1 )  ->  ( A  i^i  ( -u m [,] m ) )  =  ( A  i^i  ( -u ( n  +  1 ) [,] ( n  +  1 ) ) ) )
85 ovex 5846 . . . . . . . . . . . . 13  |-  ( -u ( n  +  1
) [,] ( n  +  1 ) )  e.  _V
8685inex2 4159 . . . . . . . . . . . 12  |-  ( A  i^i  ( -u (
n  +  1 ) [,] ( n  + 
1 ) ) )  e.  _V
8784, 16, 86fvmpt 5565 . . . . . . . . . . 11  |-  ( ( n  +  1 )  e.  NN  ->  (
( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `  (
n  +  1 ) )  =  ( A  i^i  ( -u (
n  +  1 ) [,] ( n  + 
1 ) ) ) )
8880, 87syl 17 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) `  ( n  +  1
) )  =  ( A  i^i  ( -u ( n  +  1
) [,] ( n  +  1 ) ) ) )
8977, 78, 883sstr4d 3224 . . . . . . . . 9  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) `  n )  C_  (
( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `  (
n  +  1 ) ) )
9089ralrimiva 2629 . . . . . . . 8  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  A. n  e.  NN  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n )  C_  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) `  ( n  +  1
) ) )
91 volsup 18909 . . . . . . . 8  |-  ( ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) : NN --> dom  vol  /\  A. n  e.  NN  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n )  C_  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) `  ( n  +  1
) ) )  -> 
( vol `  U. ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) )  =  sup ( ( vol " ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ) ,  RR* ,  <  ) )
9232, 90, 91syl2anc 644 . . . . . . 7  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( vol `  U. ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) )  =  sup (
( vol " ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ) , 
RR* ,  <  ) )
9367, 92eqtr3d 2320 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( vol `  A )  =  sup ( ( vol " ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) ) ,  RR* ,  <  )
)
9493breq1d 4036 . . . . 5  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  (
( vol `  A
)  <_  B  <->  sup (
( vol " ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ) , 
RR* ,  <  )  <_  B ) )
95 imassrn 5026 . . . . . . 7  |-  ( vol " ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) ) 
C_  ran  vol
96 frn 5362 . . . . . . . . 9  |-  ( vol
: dom  vol --> ( 0 [,]  +oo )  ->  ran  vol  C_  ( 0 [,]  +oo ) )
975, 96ax-mp 10 . . . . . . . 8  |-  ran  vol  C_  ( 0 [,]  +oo )
9897, 4sstri 3191 . . . . . . 7  |-  ran  vol  C_ 
RR*
9995, 98sstri 3191 . . . . . 6  |-  ( vol " ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) ) 
C_  RR*
100 supxrleub 10641 . . . . . 6  |-  ( ( ( vol " ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) )  C_  RR* 
/\  B  e.  RR* )  ->  ( sup (
( vol " ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ) , 
RR* ,  <  )  <_  B 
<-> 
A. n  e.  ( vol " ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ) n  <_  B
) )
10199, 3, 100sylancr 646 . . . . 5  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( sup ( ( vol " ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ) , 
RR* ,  <  )  <_  B 
<-> 
A. n  e.  ( vol " ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ) n  <_  B
) )
102 ffn 5356 . . . . . . . 8  |-  ( vol
: dom  vol --> ( 0 [,]  +oo )  ->  vol  Fn 
dom  vol )
1035, 102ax-mp 10 . . . . . . 7  |-  vol  Fn  dom  vol
104 frn 5362 . . . . . . . 8  |-  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) : NN --> dom  vol  ->  ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) )  C_  dom  vol )
10532, 104syl 17 . . . . . . 7  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) )  C_  dom  vol )
106 breq1 4029 . . . . . . . 8  |-  ( n  =  ( vol `  z
)  ->  ( n  <_  B  <->  ( vol `  z
)  <_  B )
)
107106ralima 5721 . . . . . . 7  |-  ( ( vol  Fn  dom  vol  /\ 
ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) )  C_  dom  vol )  ->  ( A. n  e.  ( vol " ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ) n  <_  B  <->  A. z  e.  ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ( vol `  z
)  <_  B )
)
108103, 105, 107sylancr 646 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( A. n  e.  ( vol " ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ) n  <_  B  <->  A. z  e.  ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ( vol `  z
)  <_  B )
)
109 fveq2 5487 . . . . . . . . . 10  |-  ( z  =  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n )  -> 
( vol `  z
)  =  ( vol `  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) `  n ) ) )
110109breq1d 4036 . . . . . . . . 9  |-  ( z  =  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n )  -> 
( ( vol `  z
)  <_  B  <->  ( vol `  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) `  n ) )  <_  B ) )
111110ralrn 5631 . . . . . . . 8  |-  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) )  Fn  NN  ->  ( A. z  e.  ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ( vol `  z )  <_  B  <->  A. n  e.  NN  ( vol `  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n ) )  <_  B ) )
11234, 111syl 17 . . . . . . 7  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( A. z  e.  ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ( vol `  z )  <_  B  <->  A. n  e.  NN  ( vol `  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n ) )  <_  B ) )
11319fveq2d 5491 . . . . . . . . 9  |-  ( n  e.  NN  ->  ( vol `  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n ) )  =  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) )
114113breq1d 4036 . . . . . . . 8  |-  ( n  e.  NN  ->  (
( vol `  (
( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `  n
) )  <_  B  <->  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  <_  B ) )
115114ralbiia 2578 . . . . . . 7  |-  ( A. n  e.  NN  ( vol `  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n ) )  <_  B  <->  A. n  e.  NN  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  <_  B )
116112, 115syl6bb 254 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( A. z  e.  ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ( vol `  z )  <_  B  <->  A. n  e.  NN  ( vol `  ( A  i^i  ( -u n [,] n
) ) )  <_  B ) )
117108, 116bitrd 246 . . . . 5  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( A. n  e.  ( vol " ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ) n  <_  B  <->  A. n  e.  NN  ( vol `  ( A  i^i  ( -u n [,] n
) ) )  <_  B ) )
11894, 101, 1173bitrd 272 . . . 4  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  (
( vol `  A
)  <_  B  <->  A. n  e.  NN  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  <_  B ) )
11911, 118mtbid 293 . . 3  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  -.  A. n  e.  NN  ( vol `  ( A  i^i  ( -u n [,] n
) ) )  <_  B )
120 rexnal 2557 . . 3  |-  ( E. n  e.  NN  -.  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  <_  B  <->  -.  A. n  e.  NN  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  <_  B )
121119, 120sylibr 205 . 2  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  E. n  e.  NN  -.  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  <_  B
)
1223adantr 453 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  B  e.  RR* )
1235ffvelrni 5627 . . . . . 6  |-  ( ( A  i^i  ( -u n [,] n ) )  e.  dom  vol  ->  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  e.  ( 0 [,] 
+oo ) )
1244, 123sseldi 3181 . . . . 5  |-  ( ( A  i^i  ( -u n [,] n ) )  e.  dom  vol  ->  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  e.  RR* )
12530, 124syl 17 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  e.  RR* )
126 xrltnle 8888 . . . 4  |-  ( ( B  e.  RR*  /\  ( vol `  ( A  i^i  ( -u n [,] n
) ) )  e. 
RR* )  ->  ( B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  <->  -.  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  <_  B ) )
127122, 125, 126syl2anc 644 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( B  <  ( vol `  ( A  i^i  ( -u n [,] n
) ) )  <->  -.  ( vol `  ( A  i^i  ( -u n [,] n
) ) )  <_  B ) )
128127rexbidva 2563 . 2  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( E. n  e.  NN  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  <->  E. n  e.  NN  -.  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  <_  B ) )
129121, 128mpbird 225 1  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  E. n  e.  NN  B  <  ( vol `  ( A  i^i  ( -u n [,] n
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 936    = wceq 1625    e. wcel 1687   A.wral 2546   E.wrex 2547    i^i cin 3154    C_ wss 3155   U.cuni 3830   U_ciun 3908   class class class wbr 4026    e. cmpt 4080   dom cdm 4690   ran crn 4691   "cima 4693    Fn wfn 5218   -->wf 5219   ` cfv 5223  (class class class)co 5821   supcsup 7190   RRcr 8733   0cc0 8734   1c1 8735    + caddc 8737    +oocpnf 8861   RR*cxr 8863    < clt 8864    <_ cle 8865   -ucneg 9035   NNcn 9743   [,]cicc 10655   abscabs 11715   volcvol 18819
This theorem is referenced by:  volivth  18958
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1638  ax-8 1646  ax-13 1689  ax-14 1691  ax-6 1706  ax-7 1711  ax-11 1718  ax-12 1870  ax-ext 2267  ax-rep 4134  ax-sep 4144  ax-nul 4152  ax-pow 4189  ax-pr 4215  ax-un 4513  ax-inf2 7339  ax-cc 8058  ax-cnex 8790  ax-resscn 8791  ax-1cn 8792  ax-icn 8793  ax-addcl 8794  ax-addrcl 8795  ax-mulcl 8796  ax-mulrcl 8797  ax-mulcom 8798  ax-addass 8799  ax-mulass 8800  ax-distr 8801  ax-i2m1 8802  ax-1ne0 8803  ax-1rid 8804  ax-rnegex 8805  ax-rrecex 8806  ax-cnre 8807  ax-pre-lttri 8808  ax-pre-lttrn 8809  ax-pre-ltadd 8810  ax-pre-mulgt0 8811  ax-pre-sup 8812
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1531  df-nf 1534  df-sb 1633  df-eu 2150  df-mo 2151  df-clab 2273  df-cleq 2279  df-clel 2282  df-nfc 2411  df-ne 2451  df-nel 2452  df-ral 2551  df-rex 2552  df-reu 2553  df-rmo 2554  df-rab 2555  df-v 2793  df-sbc 2995  df-csb 3085  df-dif 3158  df-un 3160  df-in 3162  df-ss 3169  df-pss 3171  df-nul 3459  df-if 3569  df-pw 3630  df-sn 3649  df-pr 3650  df-tp 3651  df-op 3652  df-uni 3831  df-int 3866  df-iun 3910  df-disj 3997  df-br 4027  df-opab 4081  df-mpt 4082  df-tr 4117  df-eprel 4306  df-id 4310  df-po 4315  df-so 4316  df-fr 4353  df-se 4354  df-we 4355  df-ord 4396  df-on 4397  df-lim 4398  df-suc 4399  df-om 4658  df-xp 4696  df-rel 4697  df-cnv 4698  df-co 4699  df-dm 4700  df-rn 4701  df-res 4702  df-ima 4703  df-fun 5225  df-fn 5226  df-f 5227  df-f1 5228  df-fo 5229  df-f1o 5230  df-fv 5231  df-isom 5232  df-ov 5824  df-oprab 5825  df-mpt2 5826  df-of 6041  df-1st 6085  df-2nd 6086  df-iota 6254  df-riota 6301  df-recs 6385  df-rdg 6420  df-1o 6476  df-2o 6477  df-oadd 6480  df-er 6657  df-map 6771  df-pm 6772  df-en 6861  df-dom 6862  df-sdom 6863  df-fin 6864  df-sup 7191  df-oi 7222  df-card 7569  df-cda 7791  df-pnf 8866  df-mnf 8867  df-xr 8868  df-ltxr 8869  df-le 8870  df-sub 9036  df-neg 9037  df-div 9421  df-nn 9744  df-2 9801  df-3 9802  df-n0 9963  df-z 10022  df-uz 10228  df-q 10314  df-rp 10352  df-xadd 10450  df-ioo 10656  df-ico 10658  df-icc 10659  df-fz 10779  df-fzo 10867  df-fl 10921  df-seq 11043  df-exp 11101  df-hash 11334  df-cj 11580  df-re 11581  df-im 11582  df-sqr 11716  df-abs 11717  df-clim 11958  df-rlim 11959  df-sum 12155  df-xmet 16369  df-met 16370  df-ovol 18820  df-vol 18821
  Copyright terms: Public domain W3C validator