MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volsup2 Unicode version

Theorem volsup2 18922
Description: The volume of  A is the supremum of the sequence  vol * `  ( A  i^i  ( -u n [,] n ) ) of volumes of bounded sets. (Contributed by Mario Carneiro, 30-Aug-2014.)
Assertion
Ref Expression
volsup2  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  E. n  e.  NN  B  <  ( vol `  ( A  i^i  ( -u n [,] n
) ) ) )
Distinct variable groups:    A, n    B, n

Proof of Theorem volsup2
StepHypRef Expression
1 simp3 962 . . . . 5  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  B  <  ( vol `  A
) )
2 rexr 8845 . . . . . . 7  |-  ( B  e.  RR  ->  B  e.  RR* )
323ad2ant2 982 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  B  e.  RR* )
4 iccssxr 10698 . . . . . . . 8  |-  ( 0 [,]  +oo )  C_  RR*
5 volf 18850 . . . . . . . . 9  |-  vol : dom  vol --> ( 0 [,] 
+oo )
65ffvelrni 5598 . . . . . . . 8  |-  ( A  e.  dom  vol  ->  ( vol `  A )  e.  ( 0 [,] 
+oo ) )
74, 6sseldi 3153 . . . . . . 7  |-  ( A  e.  dom  vol  ->  ( vol `  A )  e.  RR* )
873ad2ant1 981 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( vol `  A )  e. 
RR* )
9 xrltnle 8859 . . . . . 6  |-  ( ( B  e.  RR*  /\  ( vol `  A )  e. 
RR* )  ->  ( B  <  ( vol `  A
)  <->  -.  ( vol `  A )  <_  B
) )
103, 8, 9syl2anc 645 . . . . 5  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( B  <  ( vol `  A
)  <->  -.  ( vol `  A )  <_  B
) )
111, 10mpbid 203 . . . 4  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  -.  ( vol `  A )  <_  B )
12 negeq 9012 . . . . . . . . . . . . . 14  |-  ( m  =  n  ->  -u m  =  -u n )
13 id 21 . . . . . . . . . . . . . 14  |-  ( m  =  n  ->  m  =  n )
1412, 13oveq12d 5810 . . . . . . . . . . . . 13  |-  ( m  =  n  ->  ( -u m [,] m )  =  ( -u n [,] n ) )
1514ineq2d 3345 . . . . . . . . . . . 12  |-  ( m  =  n  ->  ( A  i^i  ( -u m [,] m ) )  =  ( A  i^i  ( -u n [,] n ) ) )
16 eqid 2258 . . . . . . . . . . . 12  |-  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) )  =  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) )
17 ovex 5817 . . . . . . . . . . . . 13  |-  ( -u n [,] n )  e. 
_V
1817inex2 4130 . . . . . . . . . . . 12  |-  ( A  i^i  ( -u n [,] n ) )  e. 
_V
1915, 16, 18fvmpt 5536 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `  n
)  =  ( A  i^i  ( -u n [,] n ) ) )
2019iuneq2i 3897 . . . . . . . . . 10  |-  U_ n  e.  NN  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n )  = 
U_ n  e.  NN  ( A  i^i  ( -u n [,] n ) )
21 iunin2 3940 . . . . . . . . . 10  |-  U_ n  e.  NN  ( A  i^i  ( -u n [,] n
) )  =  ( A  i^i  U_ n  e.  NN  ( -u n [,] n ) )
2220, 21eqtri 2278 . . . . . . . . 9  |-  U_ n  e.  NN  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n )  =  ( A  i^i  U_ n  e.  NN  ( -u n [,] n ) )
23 simpl1 963 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  A  e.  dom  vol )
24 nnre 9721 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  n  e.  RR )
2524adantl 454 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  n  e.  RR )
2625renegcld 9178 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  -> 
-u n  e.  RR )
27 iccmbl 18885 . . . . . . . . . . . . . 14  |-  ( (
-u n  e.  RR  /\  n  e.  RR )  ->  ( -u n [,] n )  e.  dom  vol )
2826, 25, 27syl2anc 645 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( -u n [,] n )  e.  dom  vol )
29 inmbl 18861 . . . . . . . . . . . . 13  |-  ( ( A  e.  dom  vol  /\  ( -u n [,] n )  e.  dom  vol )  ->  ( A  i^i  ( -u n [,] n ) )  e. 
dom  vol )
3023, 28, 29syl2anc 645 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( A  i^i  ( -u n [,] n ) )  e.  dom  vol )
3115cbvmptv 4085 . . . . . . . . . . . 12  |-  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) )  =  ( n  e.  NN  |->  ( A  i^i  ( -u n [,] n
) ) )
3230, 31fmptd 5618 . . . . . . . . . . 11  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  (
m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) : NN --> dom  vol )
33 ffn 5327 . . . . . . . . . . 11  |-  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) : NN --> dom  vol  ->  ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) )  Fn  NN )
3432, 33syl 17 . . . . . . . . . 10  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  (
m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) )  Fn  NN )
35 fniunfv 5707 . . . . . . . . . 10  |-  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) )  Fn  NN  ->  U_ n  e.  NN  (
( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `  n
)  =  U. ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) )
3634, 35syl 17 . . . . . . . . 9  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  U_ n  e.  NN  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n )  = 
U. ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) )
37 mblss 18852 . . . . . . . . . . . . . . . 16  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
38373ad2ant1 981 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  A  C_  RR )
3938sselda 3155 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  x  e.  A )  ->  x  e.  RR )
40 recn 8795 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  RR  ->  x  e.  CC )
4140abscld 11883 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR  ->  ( abs `  x )  e.  RR )
42 arch 9929 . . . . . . . . . . . . . . . 16  |-  ( ( abs `  x )  e.  RR  ->  E. n  e.  NN  ( abs `  x
)  <  n )
4341, 42syl 17 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  E. n  e.  NN  ( abs `  x
)  <  n )
44 ltle 8878 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( abs `  x
)  e.  RR  /\  n  e.  RR )  ->  ( ( abs `  x
)  <  n  ->  ( abs `  x )  <_  n ) )
4541, 24, 44syl2an 465 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  n  e.  NN )  ->  ( ( abs `  x
)  <  n  ->  ( abs `  x )  <_  n ) )
46 id 21 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  RR  /\  -u n  <_  x  /\  x  <_  n )  -> 
( x  e.  RR  /\  -u n  <_  x  /\  x  <_  n ) )
47463expib 1159 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  RR  ->  (
( -u n  <_  x  /\  x  <_  n )  ->  ( x  e.  RR  /\  -u n  <_  x  /\  x  <_  n ) ) )
4847adantr 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  n  e.  NN )  ->  ( ( -u n  <_  x  /\  x  <_  n )  ->  (
x  e.  RR  /\  -u n  <_  x  /\  x  <_  n ) ) )
49 absle 11764 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  RR  /\  n  e.  RR )  ->  ( ( abs `  x
)  <_  n  <->  ( -u n  <_  x  /\  x  <_  n ) ) )
5024, 49sylan2 462 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  n  e.  NN )  ->  ( ( abs `  x
)  <_  n  <->  ( -u n  <_  x  /\  x  <_  n ) ) )
5124adantl 454 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  RR  /\  n  e.  NN )  ->  n  e.  RR )
5251renegcld 9178 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  RR  /\  n  e.  NN )  -> 
-u n  e.  RR )
53 elicc2 10681 . . . . . . . . . . . . . . . . . . 19  |-  ( (
-u n  e.  RR  /\  n  e.  RR )  ->  ( x  e.  ( -u n [,] n )  <->  ( x  e.  RR  /\  -u n  <_  x  /\  x  <_  n ) ) )
5452, 51, 53syl2anc 645 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  n  e.  NN )  ->  ( x  e.  (
-u n [,] n
)  <->  ( x  e.  RR  /\  -u n  <_  x  /\  x  <_  n ) ) )
5548, 50, 543imtr4d 261 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  n  e.  NN )  ->  ( ( abs `  x
)  <_  n  ->  x  e.  ( -u n [,] n ) ) )
5645, 55syld 42 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  n  e.  NN )  ->  ( ( abs `  x
)  <  n  ->  x  e.  ( -u n [,] n ) ) )
5756reximdva 2630 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  ( E. n  e.  NN  ( abs `  x )  <  n  ->  E. n  e.  NN  x  e.  (
-u n [,] n
) ) )
5843, 57mpd 16 . . . . . . . . . . . . . 14  |-  ( x  e.  RR  ->  E. n  e.  NN  x  e.  (
-u n [,] n
) )
5939, 58syl 17 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  x  e.  A )  ->  E. n  e.  NN  x  e.  ( -u n [,] n ) )
6059ex 425 . . . . . . . . . . . 12  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  (
x  e.  A  ->  E. n  e.  NN  x  e.  ( -u n [,] n ) ) )
61 eliun 3883 . . . . . . . . . . . 12  |-  ( x  e.  U_ n  e.  NN  ( -u n [,] n )  <->  E. n  e.  NN  x  e.  (
-u n [,] n
) )
6260, 61syl6ibr 220 . . . . . . . . . . 11  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  (
x  e.  A  ->  x  e.  U_ n  e.  NN  ( -u n [,] n ) ) )
6362ssrdv 3160 . . . . . . . . . 10  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  A  C_ 
U_ n  e.  NN  ( -u n [,] n
) )
64 df-ss 3141 . . . . . . . . . 10  |-  ( A 
C_  U_ n  e.  NN  ( -u n [,] n
)  <->  ( A  i^i  U_ n  e.  NN  ( -u n [,] n ) )  =  A )
6563, 64sylib 190 . . . . . . . . 9  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( A  i^i  U_ n  e.  NN  ( -u n [,] n
) )  =  A )
6622, 36, 653eqtr3a 2314 . . . . . . . 8  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  U. ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) )  =  A )
6766fveq2d 5462 . . . . . . 7  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( vol `  U. ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) )  =  ( vol `  A ) )
68 peano2re 8953 . . . . . . . . . . . . . 14  |-  ( n  e.  RR  ->  (
n  +  1 )  e.  RR )
6925, 68syl 17 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( n  +  1 )  e.  RR )
7069renegcld 9178 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  -> 
-u ( n  + 
1 )  e.  RR )
7125lep1d 9656 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  n  <_  ( n  +  1 ) )
7225, 69lenegd 9319 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( n  <_  (
n  +  1 )  <->  -u ( n  +  1 )  <_  -u n ) )
7371, 72mpbid 203 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  -> 
-u ( n  + 
1 )  <_  -u n
)
74 iccss 10684 . . . . . . . . . . . 12  |-  ( ( ( -u ( n  +  1 )  e.  RR  /\  ( n  +  1 )  e.  RR )  /\  ( -u ( n  +  1 )  <_  -u n  /\  n  <_  ( n  + 
1 ) ) )  ->  ( -u n [,] n )  C_  ( -u ( n  +  1 ) [,] ( n  +  1 ) ) )
7570, 69, 73, 71, 74syl22anc 1188 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( -u n [,] n )  C_  ( -u ( n  +  1 ) [,] ( n  +  1 ) ) )
76 sslin 3370 . . . . . . . . . . 11  |-  ( (
-u n [,] n
)  C_  ( -u (
n  +  1 ) [,] ( n  + 
1 ) )  -> 
( A  i^i  ( -u n [,] n ) )  C_  ( A  i^i  ( -u ( n  +  1 ) [,] ( n  +  1 ) ) ) )
7775, 76syl 17 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( A  i^i  ( -u n [,] n ) )  C_  ( A  i^i  ( -u ( n  +  1 ) [,] ( n  +  1 ) ) ) )
7819adantl 454 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) `  n )  =  ( A  i^i  ( -u n [,] n ) ) )
79 peano2nn 9726 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
n  +  1 )  e.  NN )
8079adantl 454 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( n  +  1 )  e.  NN )
81 negeq 9012 . . . . . . . . . . . . . 14  |-  ( m  =  ( n  + 
1 )  ->  -u m  =  -u ( n  + 
1 ) )
82 id 21 . . . . . . . . . . . . . 14  |-  ( m  =  ( n  + 
1 )  ->  m  =  ( n  + 
1 ) )
8381, 82oveq12d 5810 . . . . . . . . . . . . 13  |-  ( m  =  ( n  + 
1 )  ->  ( -u m [,] m )  =  ( -u (
n  +  1 ) [,] ( n  + 
1 ) ) )
8483ineq2d 3345 . . . . . . . . . . . 12  |-  ( m  =  ( n  + 
1 )  ->  ( A  i^i  ( -u m [,] m ) )  =  ( A  i^i  ( -u ( n  +  1 ) [,] ( n  +  1 ) ) ) )
85 ovex 5817 . . . . . . . . . . . . 13  |-  ( -u ( n  +  1
) [,] ( n  +  1 ) )  e.  _V
8685inex2 4130 . . . . . . . . . . . 12  |-  ( A  i^i  ( -u (
n  +  1 ) [,] ( n  + 
1 ) ) )  e.  _V
8784, 16, 86fvmpt 5536 . . . . . . . . . . 11  |-  ( ( n  +  1 )  e.  NN  ->  (
( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `  (
n  +  1 ) )  =  ( A  i^i  ( -u (
n  +  1 ) [,] ( n  + 
1 ) ) ) )
8880, 87syl 17 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) `  ( n  +  1
) )  =  ( A  i^i  ( -u ( n  +  1
) [,] ( n  +  1 ) ) ) )
8977, 78, 883sstr4d 3196 . . . . . . . . 9  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) `  n )  C_  (
( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `  (
n  +  1 ) ) )
9089ralrimiva 2601 . . . . . . . 8  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  A. n  e.  NN  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n )  C_  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) `  ( n  +  1
) ) )
91 volsup 18875 . . . . . . . 8  |-  ( ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) : NN --> dom  vol  /\  A. n  e.  NN  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n )  C_  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) `  ( n  +  1
) ) )  -> 
( vol `  U. ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) )  =  sup ( ( vol " ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ) ,  RR* ,  <  ) )
9232, 90, 91syl2anc 645 . . . . . . 7  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( vol `  U. ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) )  =  sup (
( vol " ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ) , 
RR* ,  <  ) )
9367, 92eqtr3d 2292 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( vol `  A )  =  sup ( ( vol " ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) ) ,  RR* ,  <  )
)
9493breq1d 4007 . . . . 5  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  (
( vol `  A
)  <_  B  <->  sup (
( vol " ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ) , 
RR* ,  <  )  <_  B ) )
95 imassrn 5013 . . . . . . 7  |-  ( vol " ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) ) 
C_  ran  vol
96 frn 5333 . . . . . . . . 9  |-  ( vol
: dom  vol --> ( 0 [,]  +oo )  ->  ran  vol  C_  ( 0 [,]  +oo ) )
975, 96ax-mp 10 . . . . . . . 8  |-  ran  vol  C_  ( 0 [,]  +oo )
9897, 4sstri 3163 . . . . . . 7  |-  ran  vol  C_ 
RR*
9995, 98sstri 3163 . . . . . 6  |-  ( vol " ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) ) 
C_  RR*
100 supxrleub 10611 . . . . . 6  |-  ( ( ( vol " ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) )  C_  RR* 
/\  B  e.  RR* )  ->  ( sup (
( vol " ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ) , 
RR* ,  <  )  <_  B 
<-> 
A. n  e.  ( vol " ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ) n  <_  B
) )
10199, 3, 100sylancr 647 . . . . 5  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( sup ( ( vol " ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ) , 
RR* ,  <  )  <_  B 
<-> 
A. n  e.  ( vol " ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ) n  <_  B
) )
102 ffn 5327 . . . . . . . 8  |-  ( vol
: dom  vol --> ( 0 [,]  +oo )  ->  vol  Fn 
dom  vol )
1035, 102ax-mp 10 . . . . . . 7  |-  vol  Fn  dom  vol
104 frn 5333 . . . . . . . 8  |-  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) : NN --> dom  vol  ->  ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) )  C_  dom  vol )
10532, 104syl 17 . . . . . . 7  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) )  C_  dom  vol )
106 breq1 4000 . . . . . . . 8  |-  ( n  =  ( vol `  z
)  ->  ( n  <_  B  <->  ( vol `  z
)  <_  B )
)
107106ralima 5692 . . . . . . 7  |-  ( ( vol  Fn  dom  vol  /\ 
ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) )  C_  dom  vol )  ->  ( A. n  e.  ( vol " ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ) n  <_  B  <->  A. z  e.  ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ( vol `  z
)  <_  B )
)
108103, 105, 107sylancr 647 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( A. n  e.  ( vol " ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ) n  <_  B  <->  A. z  e.  ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ( vol `  z
)  <_  B )
)
109 fveq2 5458 . . . . . . . . . 10  |-  ( z  =  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n )  -> 
( vol `  z
)  =  ( vol `  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) `  n ) ) )
110109breq1d 4007 . . . . . . . . 9  |-  ( z  =  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n )  -> 
( ( vol `  z
)  <_  B  <->  ( vol `  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m
) ) ) `  n ) )  <_  B ) )
111110ralrn 5602 . . . . . . . 8  |-  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) )  Fn  NN  ->  ( A. z  e.  ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ( vol `  z )  <_  B  <->  A. n  e.  NN  ( vol `  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n ) )  <_  B ) )
11234, 111syl 17 . . . . . . 7  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( A. z  e.  ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ( vol `  z )  <_  B  <->  A. n  e.  NN  ( vol `  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n ) )  <_  B ) )
11319fveq2d 5462 . . . . . . . . 9  |-  ( n  e.  NN  ->  ( vol `  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n ) )  =  ( vol `  ( A  i^i  ( -u n [,] n ) ) ) )
114113breq1d 4007 . . . . . . . 8  |-  ( n  e.  NN  ->  (
( vol `  (
( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `  n
) )  <_  B  <->  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  <_  B ) )
115114ralbiia 2550 . . . . . . 7  |-  ( A. n  e.  NN  ( vol `  ( ( m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) `
 n ) )  <_  B  <->  A. n  e.  NN  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  <_  B )
116112, 115syl6bb 254 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( A. z  e.  ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ( vol `  z )  <_  B  <->  A. n  e.  NN  ( vol `  ( A  i^i  ( -u n [,] n
) ) )  <_  B ) )
117108, 116bitrd 246 . . . . 5  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( A. n  e.  ( vol " ran  (  m  e.  NN  |->  ( A  i^i  ( -u m [,] m ) ) ) ) n  <_  B  <->  A. n  e.  NN  ( vol `  ( A  i^i  ( -u n [,] n
) ) )  <_  B ) )
11894, 101, 1173bitrd 272 . . . 4  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  (
( vol `  A
)  <_  B  <->  A. n  e.  NN  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  <_  B ) )
11911, 118mtbid 293 . . 3  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  -.  A. n  e.  NN  ( vol `  ( A  i^i  ( -u n [,] n
) ) )  <_  B )
120 rexnal 2529 . . 3  |-  ( E. n  e.  NN  -.  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  <_  B  <->  -.  A. n  e.  NN  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  <_  B )
121119, 120sylibr 205 . 2  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  E. n  e.  NN  -.  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  <_  B
)
1223adantr 453 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  B  e.  RR* )
1235ffvelrni 5598 . . . . . 6  |-  ( ( A  i^i  ( -u n [,] n ) )  e.  dom  vol  ->  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  e.  ( 0 [,] 
+oo ) )
1244, 123sseldi 3153 . . . . 5  |-  ( ( A  i^i  ( -u n [,] n ) )  e.  dom  vol  ->  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  e.  RR* )
12530, 124syl 17 . . . 4  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  e.  RR* )
126 xrltnle 8859 . . . 4  |-  ( ( B  e.  RR*  /\  ( vol `  ( A  i^i  ( -u n [,] n
) ) )  e. 
RR* )  ->  ( B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  <->  -.  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  <_  B ) )
127122, 125, 126syl2anc 645 . . 3  |-  ( ( ( A  e.  dom  vol 
/\  B  e.  RR  /\  B  <  ( vol `  A ) )  /\  n  e.  NN )  ->  ( B  <  ( vol `  ( A  i^i  ( -u n [,] n
) ) )  <->  -.  ( vol `  ( A  i^i  ( -u n [,] n
) ) )  <_  B ) )
128127rexbidva 2535 . 2  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  ( E. n  e.  NN  B  <  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  <->  E. n  e.  NN  -.  ( vol `  ( A  i^i  ( -u n [,] n ) ) )  <_  B ) )
129121, 128mpbird 225 1  |-  ( ( A  e.  dom  vol  /\  B  e.  RR  /\  B  <  ( vol `  A
) )  ->  E. n  e.  NN  B  <  ( vol `  ( A  i^i  ( -u n [,] n
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   A.wral 2518   E.wrex 2519    i^i cin 3126    C_ wss 3127   U.cuni 3801   U_ciun 3879   class class class wbr 3997    e. cmpt 4051   dom cdm 4661   ran crn 4662   "cima 4664    Fn wfn 4668   -->wf 4669   ` cfv 4673  (class class class)co 5792   supcsup 7161   RRcr 8704   0cc0 8705   1c1 8706    + caddc 8708    +oocpnf 8832   RR*cxr 8834    < clt 8835    <_ cle 8836   -ucneg 9006   NNcn 9714   [,]cicc 10625   abscabs 11684   volcvol 18785
This theorem is referenced by:  volivth  18924
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cc 8029  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-disj 3968  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-of 6012  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-2o 6448  df-oadd 6451  df-er 6628  df-map 6742  df-pm 6743  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-sup 7162  df-oi 7193  df-card 7540  df-cda 7762  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-n0 9933  df-z 9992  df-uz 10198  df-q 10284  df-rp 10322  df-xadd 10420  df-ioo 10626  df-ico 10628  df-icc 10629  df-fz 10749  df-fzo 10837  df-fl 10891  df-seq 11013  df-exp 11071  df-hash 11304  df-cj 11549  df-re 11550  df-im 11551  df-sqr 11685  df-abs 11686  df-clim 11927  df-rlim 11928  df-sum 12124  df-xmet 16335  df-met 16336  df-ovol 18786  df-vol 18787
  Copyright terms: Public domain W3C validator