Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclef Structured version   Unicode version

Theorem vtoclef 3024
 Description: Implicit substitution of a class for a set variable. (Contributed by NM, 18-Aug-1993.)
Hypotheses
Ref Expression
vtoclef.1
vtoclef.2
vtoclef.3
Assertion
Ref Expression
vtoclef
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem vtoclef
StepHypRef Expression
1 vtoclef.2 . . 3
21isseti 2962 . 2
3 vtoclef.1 . . 3
4 vtoclef.3 . . 3
53, 4exlimi 1821 . 2
62, 5ax-mp 8 1
 Colors of variables: wff set class Syntax hints:   wi 4  wex 1550  wnf 1553   wceq 1652   wcel 1725  cvv 2956 This theorem is referenced by:  nn0ind-raph  10370 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-11 1761  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-v 2958
 Copyright terms: Public domain W3C validator