MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclef Unicode version

Theorem vtoclef 2869
Description: Implicit substitution of a class for a set variable. (Contributed by NM, 18-Aug-1993.)
Hypotheses
Ref Expression
vtoclef.1  |-  F/ x ph
vtoclef.2  |-  A  e. 
_V
vtoclef.3  |-  ( x  =  A  ->  ph )
Assertion
Ref Expression
vtoclef  |-  ph
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem vtoclef
StepHypRef Expression
1 vtoclef.2 . . 3  |-  A  e. 
_V
21isseti 2807 . 2  |-  E. x  x  =  A
3 vtoclef.1 . . 3  |-  F/ x ph
4 vtoclef.3 . . 3  |-  ( x  =  A  ->  ph )
53, 4exlimi 1813 . 2  |-  ( E. x  x  =  A  ->  ph )
62, 5ax-mp 8 1  |-  ph
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1531   F/wnf 1534    = wceq 1632    e. wcel 1696   _Vcvv 2801
This theorem is referenced by:  nn0ind-raph  10128
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-11 1727  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-v 2803
  Copyright terms: Public domain W3C validator