Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispi Structured version   Unicode version

Theorem wallispi 27795
Description: Wallis' formula for π : Wallis' product converges to π / 2 . (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
wallispi.1  |-  F  =  ( k  e.  NN  |->  ( ( ( 2  x.  k )  / 
( ( 2  x.  k )  -  1 ) )  x.  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) ) ) )
wallispi.2  |-  W  =  ( n  e.  NN  |->  (  seq  1 (  x.  ,  F ) `  n ) )
Assertion
Ref Expression
wallispi  |-  W  ~~>  ( pi 
/  2 )
Distinct variable groups:    k, n    n, F
Allowed substitution hints:    F( k)    W( k, n)

Proof of Theorem wallispi
Dummy variables  j  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 10521 . . . 4  |-  NN  =  ( ZZ>= `  1 )
2 1z 10311 . . . . 5  |-  1  e.  ZZ
32a1i 11 . . . 4  |-  (  T. 
->  1  e.  ZZ )
4 wallispi.1 . . . . . . . 8  |-  F  =  ( k  e.  NN  |->  ( ( ( 2  x.  k )  / 
( ( 2  x.  k )  -  1 ) )  x.  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) ) ) )
5 eqid 2436 . . . . . . . 8  |-  ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x
) ^ n )  _d x )  =  ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x )
6 eqid 2436 . . . . . . . 8  |-  ( n  e.  NN  |->  ( ( ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x ) `
 ( 2  x.  n ) )  / 
( ( n  e. 
NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x
) ^ n )  _d x ) `  ( ( 2  x.  n )  +  1 ) ) ) )  =  ( n  e.  NN  |->  ( ( ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x
) ^ n )  _d x ) `  ( 2  x.  n
) )  /  (
( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x ) `
 ( ( 2  x.  n )  +  1 ) ) ) )
7 eqid 2436 . . . . . . . 8  |-  ( n  e.  NN  |->  ( ( pi  /  2 )  x.  ( 1  / 
(  seq  1 (  x.  ,  F ) `
 n ) ) ) )  =  ( n  e.  NN  |->  ( ( pi  /  2
)  x.  ( 1  /  (  seq  1
(  x.  ,  F
) `  n )
) ) )
8 eqid 2436 . . . . . . . 8  |-  ( n  e.  NN  |->  ( ( ( 2  x.  n
)  +  1 )  /  ( 2  x.  n ) ) )  =  ( n  e.  NN  |->  ( ( ( 2  x.  n )  +  1 )  / 
( 2  x.  n
) ) )
94, 5, 6, 7, 8wallispilem5 27794 . . . . . . 7  |-  ( n  e.  NN  |->  ( ( pi  /  2 )  x.  ( 1  / 
(  seq  1 (  x.  ,  F ) `
 n ) ) ) )  ~~>  1
109a1i 11 . . . . . 6  |-  (  T. 
->  ( n  e.  NN  |->  ( ( pi  / 
2 )  x.  (
1  /  (  seq  1 (  x.  ,  F ) `  n
) ) ) )  ~~>  1 )
11 2cn 10070 . . . . . . . 8  |-  2  e.  CC
1211a1i 11 . . . . . . 7  |-  (  T. 
->  2  e.  CC )
13 pire 20372 . . . . . . . . 9  |-  pi  e.  RR
1413recni 9102 . . . . . . . 8  |-  pi  e.  CC
1514a1i 11 . . . . . . 7  |-  (  T. 
->  pi  e.  CC )
16 pipos 20373 . . . . . . . . 9  |-  0  <  pi
1713, 16gt0ne0ii 9563 . . . . . . . 8  |-  pi  =/=  0
1817a1i 11 . . . . . . 7  |-  (  T. 
->  pi  =/=  0 )
1912, 15, 18divcld 9790 . . . . . 6  |-  (  T. 
->  ( 2  /  pi )  e.  CC )
20 nnex 10006 . . . . . . . 8  |-  NN  e.  _V
2120mptex 5966 . . . . . . 7  |-  ( n  e.  NN  |->  ( 1  /  (  seq  1
(  x.  ,  F
) `  n )
) )  e.  _V
2221a1i 11 . . . . . 6  |-  (  T. 
->  ( n  e.  NN  |->  ( 1  /  (  seq  1 (  x.  ,  F ) `  n
) ) )  e. 
_V )
2314a1i 11 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  pi  e.  CC )
2423halfcld 10212 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
pi  /  2 )  e.  CC )
25 elnnuz 10522 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  <->  n  e.  ( ZZ>= `  1 )
)
2625biimpi 187 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  n  e.  ( ZZ>= `  1 )
)
274a1i 11 . . . . . . . . . . . . . . . 16  |-  ( j  e.  ( 1 ... n )  ->  F  =  ( k  e.  NN  |->  ( ( ( 2  x.  k )  /  ( ( 2  x.  k )  - 
1 ) )  x.  ( ( 2  x.  k )  /  (
( 2  x.  k
)  +  1 ) ) ) ) )
28 oveq2 6089 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  j  ->  (
2  x.  k )  =  ( 2  x.  j ) )
2928oveq1d 6096 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  j  ->  (
( 2  x.  k
)  -  1 )  =  ( ( 2  x.  j )  - 
1 ) )
3028, 29oveq12d 6099 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  j  ->  (
( 2  x.  k
)  /  ( ( 2  x.  k )  -  1 ) )  =  ( ( 2  x.  j )  / 
( ( 2  x.  j )  -  1 ) ) )
3128oveq1d 6096 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  j  ->  (
( 2  x.  k
)  +  1 )  =  ( ( 2  x.  j )  +  1 ) )
3228, 31oveq12d 6099 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  j  ->  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) )  =  ( ( 2  x.  j )  / 
( ( 2  x.  j )  +  1 ) ) )
3330, 32oveq12d 6099 . . . . . . . . . . . . . . . . 17  |-  ( k  =  j  ->  (
( ( 2  x.  k )  /  (
( 2  x.  k
)  -  1 ) )  x.  ( ( 2  x.  k )  /  ( ( 2  x.  k )  +  1 ) ) )  =  ( ( ( 2  x.  j )  /  ( ( 2  x.  j )  - 
1 ) )  x.  ( ( 2  x.  j )  /  (
( 2  x.  j
)  +  1 ) ) ) )
3433adantl 453 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  ( 1 ... n )  /\  k  =  j )  ->  ( ( ( 2  x.  k )  / 
( ( 2  x.  k )  -  1 ) )  x.  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) ) )  =  ( ( ( 2  x.  j
)  /  ( ( 2  x.  j )  -  1 ) )  x.  ( ( 2  x.  j )  / 
( ( 2  x.  j )  +  1 ) ) ) )
35 elfznn 11080 . . . . . . . . . . . . . . . 16  |-  ( j  e.  ( 1 ... n )  ->  j  e.  NN )
3611a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  e.  NN  ->  2  e.  CC )
37 nncn 10008 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  e.  NN  ->  j  e.  CC )
3836, 37mulcld 9108 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  NN  ->  (
2  x.  j )  e.  CC )
39 ax-1cn 9048 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  CC
4039a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  e.  NN  ->  1  e.  CC )
4138, 40subcld 9411 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  NN  ->  (
( 2  x.  j
)  -  1 )  e.  CC )
42 1re 9090 . . . . . . . . . . . . . . . . . . . . . 22  |-  1  e.  RR
4342a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  e.  NN  ->  1  e.  RR )
44 1t1e1 10126 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 1  x.  1 )  =  1
4543, 43remulcld 9116 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( j  e.  NN  ->  (
1  x.  1 )  e.  RR )
46 2re 10069 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  2  e.  RR
4746a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( j  e.  NN  ->  2  e.  RR )
4847, 43remulcld 9116 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( j  e.  NN  ->  (
2  x.  1 )  e.  RR )
49 nnre 10007 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( j  e.  NN  ->  j  e.  RR )
5047, 49remulcld 9116 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( j  e.  NN  ->  (
2  x.  j )  e.  RR )
51 1rp 10616 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  1  e.  RR+
5251a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( j  e.  NN  ->  1  e.  RR+ )
53 1lt2 10142 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  1  <  2
5453a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( j  e.  NN  ->  1  <  2 )
5543, 47, 52, 54ltmul1dd 10699 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( j  e.  NN  ->  (
1  x.  1 )  <  ( 2  x.  1 ) )
56 0re 9091 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  0  e.  RR
57 2pos 10082 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  0  <  2
5856, 46, 57ltleii 9196 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  0  <_  2
5958a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( j  e.  NN  ->  0  <_  2 )
60 nnge1 10026 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( j  e.  NN  ->  1  <_  j )
6143, 49, 47, 59, 60lemul2ad 9951 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( j  e.  NN  ->  (
2  x.  1 )  <_  ( 2  x.  j ) )
6245, 48, 50, 55, 61ltletrd 9230 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( j  e.  NN  ->  (
1  x.  1 )  <  ( 2  x.  j ) )
6344, 62syl5eqbrr 4246 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  e.  NN  ->  1  <  ( 2  x.  j
) )
6443, 63gtned 9208 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  e.  NN  ->  (
2  x.  j )  =/=  1 )
6538, 40, 64subne0d 9420 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  NN  ->  (
( 2  x.  j
)  -  1 )  =/=  0 )
6638, 41, 65divcld 9790 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  NN  ->  (
( 2  x.  j
)  /  ( ( 2  x.  j )  -  1 ) )  e.  CC )
6738, 40addcld 9107 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  NN  ->  (
( 2  x.  j
)  +  1 )  e.  CC )
6856a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  e.  NN  ->  0  e.  RR )
6950, 43readdcld 9115 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  e.  NN  ->  (
( 2  x.  j
)  +  1 )  e.  RR )
7052rpgt0d 10651 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  e.  NN  ->  0  <  1 )
71 2rp 10617 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  2  e.  RR+
7271a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( j  e.  NN  ->  2  e.  RR+ )
73 nnrp 10621 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( j  e.  NN  ->  j  e.  RR+ )
7472, 73rpmulcld 10664 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( j  e.  NN  ->  (
2  x.  j )  e.  RR+ )
7543, 74ltaddrp2d 10678 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  e.  NN  ->  1  <  ( ( 2  x.  j )  +  1 ) )
7668, 43, 69, 70, 75lttrd 9231 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  e.  NN  ->  0  <  ( ( 2  x.  j )  +  1 ) )
7768, 76gtned 9208 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  NN  ->  (
( 2  x.  j
)  +  1 )  =/=  0 )
7838, 67, 77divcld 9790 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  NN  ->  (
( 2  x.  j
)  /  ( ( 2  x.  j )  +  1 ) )  e.  CC )
7966, 78mulcld 9108 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  NN  ->  (
( ( 2  x.  j )  /  (
( 2  x.  j
)  -  1 ) )  x.  ( ( 2  x.  j )  /  ( ( 2  x.  j )  +  1 ) ) )  e.  CC )
8035, 79syl 16 . . . . . . . . . . . . . . . 16  |-  ( j  e.  ( 1 ... n )  ->  (
( ( 2  x.  j )  /  (
( 2  x.  j
)  -  1 ) )  x.  ( ( 2  x.  j )  /  ( ( 2  x.  j )  +  1 ) ) )  e.  CC )
8127, 34, 35, 80fvmptd 5810 . . . . . . . . . . . . . . 15  |-  ( j  e.  ( 1 ... n )  ->  ( F `  j )  =  ( ( ( 2  x.  j )  /  ( ( 2  x.  j )  - 
1 ) )  x.  ( ( 2  x.  j )  /  (
( 2  x.  j
)  +  1 ) ) ) )
8271a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  ( 1 ... n )  ->  2  e.  RR+ )
8335nnrpd 10647 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  ( 1 ... n )  ->  j  e.  RR+ )
8482, 83rpmulcld 10664 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( 1 ... n )  ->  (
2  x.  j )  e.  RR+ )
8550, 43resubcld 9465 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  NN  ->  (
( 2  x.  j
)  -  1 )  e.  RR )
86 1m1e0 10068 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  -  1 )  =  0
8743, 50, 43, 63ltsub1dd 9638 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  e.  NN  ->  (
1  -  1 )  <  ( ( 2  x.  j )  - 
1 ) )
8886, 87syl5eqbrr 4246 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  NN  ->  0  <  ( ( 2  x.  j )  -  1 ) )
8985, 88elrpd 10646 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  NN  ->  (
( 2  x.  j
)  -  1 )  e.  RR+ )
9035, 89syl 16 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( 1 ... n )  ->  (
( 2  x.  j
)  -  1 )  e.  RR+ )
9184, 90rpdivcld 10665 . . . . . . . . . . . . . . . 16  |-  ( j  e.  ( 1 ... n )  ->  (
( 2  x.  j
)  /  ( ( 2  x.  j )  -  1 ) )  e.  RR+ )
9246a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  ( 1 ... n )  ->  2  e.  RR )
9335nnred 10015 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  ( 1 ... n )  ->  j  e.  RR )
9492, 93remulcld 9116 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  ( 1 ... n )  ->  (
2  x.  j )  e.  RR )
9582rpge0d 10652 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  ( 1 ... n )  ->  0  <_  2 )
9683rpge0d 10652 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  ( 1 ... n )  ->  0  <_  j )
9792, 93, 95, 96mulge0d 9603 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  ( 1 ... n )  ->  0  <_  ( 2  x.  j
) )
9894, 97ge0p1rpd 10674 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( 1 ... n )  ->  (
( 2  x.  j
)  +  1 )  e.  RR+ )
9984, 98rpdivcld 10665 . . . . . . . . . . . . . . . 16  |-  ( j  e.  ( 1 ... n )  ->  (
( 2  x.  j
)  /  ( ( 2  x.  j )  +  1 ) )  e.  RR+ )
10091, 99rpmulcld 10664 . . . . . . . . . . . . . . 15  |-  ( j  e.  ( 1 ... n )  ->  (
( ( 2  x.  j )  /  (
( 2  x.  j
)  -  1 ) )  x.  ( ( 2  x.  j )  /  ( ( 2  x.  j )  +  1 ) ) )  e.  RR+ )
10181, 100eqeltrd 2510 . . . . . . . . . . . . . 14  |-  ( j  e.  ( 1 ... n )  ->  ( F `  j )  e.  RR+ )
102101adantl 453 . . . . . . . . . . . . 13  |-  ( ( n  e.  NN  /\  j  e.  ( 1 ... n ) )  ->  ( F `  j )  e.  RR+ )
103 rpmulcl 10633 . . . . . . . . . . . . . 14  |-  ( ( j  e.  RR+  /\  w  e.  RR+ )  ->  (
j  x.  w )  e.  RR+ )
104103adantl 453 . . . . . . . . . . . . 13  |-  ( ( n  e.  NN  /\  ( j  e.  RR+  /\  w  e.  RR+ )
)  ->  ( j  x.  w )  e.  RR+ )
10526, 102, 104seqcl 11343 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (  seq  1 (  x.  ,  F ) `  n
)  e.  RR+ )
106105rpcnd 10650 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (  seq  1 (  x.  ,  F ) `  n
)  e.  CC )
107105rpne0d 10653 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (  seq  1 (  x.  ,  F ) `  n
)  =/=  0 )
108106, 107reccld 9783 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
1  /  (  seq  1 (  x.  ,  F ) `  n
) )  e.  CC )
10924, 108mulcld 9108 . . . . . . . . 9  |-  ( n  e.  NN  ->  (
( pi  /  2
)  x.  ( 1  /  (  seq  1
(  x.  ,  F
) `  n )
) )  e.  CC )
1107, 109fmpti 5892 . . . . . . . 8  |-  ( n  e.  NN  |->  ( ( pi  /  2 )  x.  ( 1  / 
(  seq  1 (  x.  ,  F ) `
 n ) ) ) ) : NN --> CC
111110a1i 11 . . . . . . 7  |-  (  T. 
->  ( n  e.  NN  |->  ( ( pi  / 
2 )  x.  (
1  /  (  seq  1 (  x.  ,  F ) `  n
) ) ) ) : NN --> CC )
112111ffvelrnda 5870 . . . . . 6  |-  ( (  T.  /\  j  e.  NN )  ->  (
( n  e.  NN  |->  ( ( pi  / 
2 )  x.  (
1  /  (  seq  1 (  x.  ,  F ) `  n
) ) ) ) `
 j )  e.  CC )
113 fveq2 5728 . . . . . . . . . . . . 13  |-  ( n  =  j  ->  (  seq  1 (  x.  ,  F ) `  n
)  =  (  seq  1 (  x.  ,  F ) `  j
) )
114113eleq1d 2502 . . . . . . . . . . . 12  |-  ( n  =  j  ->  (
(  seq  1 (  x.  ,  F ) `
 n )  e.  RR+ 
<->  (  seq  1 (  x.  ,  F ) `
 j )  e.  RR+ ) )
115114, 105vtoclga 3017 . . . . . . . . . . 11  |-  ( j  e.  NN  ->  (  seq  1 (  x.  ,  F ) `  j
)  e.  RR+ )
116115rpcnd 10650 . . . . . . . . . 10  |-  ( j  e.  NN  ->  (  seq  1 (  x.  ,  F ) `  j
)  e.  CC )
117115rpne0d 10653 . . . . . . . . . 10  |-  ( j  e.  NN  ->  (  seq  1 (  x.  ,  F ) `  j
)  =/=  0 )
11840, 116, 117divrecd 9793 . . . . . . . . 9  |-  ( j  e.  NN  ->  (
1  /  (  seq  1 (  x.  ,  F ) `  j
) )  =  ( 1  x.  ( 1  /  (  seq  1
(  x.  ,  F
) `  j )
) ) )
11914a1i 11 . . . . . . . . . . . 12  |-  ( j  e.  NN  ->  pi  e.  CC )
12072rpne0d 10653 . . . . . . . . . . . 12  |-  ( j  e.  NN  ->  2  =/=  0 )
12117a1i 11 . . . . . . . . . . . 12  |-  ( j  e.  NN  ->  pi  =/=  0 )
12236, 119, 120, 121divcan6d 9809 . . . . . . . . . . 11  |-  ( j  e.  NN  ->  (
( 2  /  pi )  x.  ( pi  /  2 ) )  =  1 )
123122eqcomd 2441 . . . . . . . . . 10  |-  ( j  e.  NN  ->  1  =  ( ( 2  /  pi )  x.  ( pi  /  2
) ) )
124123oveq1d 6096 . . . . . . . . 9  |-  ( j  e.  NN  ->  (
1  x.  ( 1  /  (  seq  1
(  x.  ,  F
) `  j )
) )  =  ( ( ( 2  /  pi )  x.  (
pi  /  2 ) )  x.  ( 1  /  (  seq  1
(  x.  ,  F
) `  j )
) ) )
12536, 119, 121divcld 9790 . . . . . . . . . 10  |-  ( j  e.  NN  ->  (
2  /  pi )  e.  CC )
126119halfcld 10212 . . . . . . . . . 10  |-  ( j  e.  NN  ->  (
pi  /  2 )  e.  CC )
127116, 117reccld 9783 . . . . . . . . . 10  |-  ( j  e.  NN  ->  (
1  /  (  seq  1 (  x.  ,  F ) `  j
) )  e.  CC )
128125, 126, 127mulassd 9111 . . . . . . . . 9  |-  ( j  e.  NN  ->  (
( ( 2  /  pi )  x.  (
pi  /  2 ) )  x.  ( 1  /  (  seq  1
(  x.  ,  F
) `  j )
) )  =  ( ( 2  /  pi )  x.  ( (
pi  /  2 )  x.  ( 1  / 
(  seq  1 (  x.  ,  F ) `
 j ) ) ) ) )
129118, 124, 1283eqtrd 2472 . . . . . . . 8  |-  ( j  e.  NN  ->  (
1  /  (  seq  1 (  x.  ,  F ) `  j
) )  =  ( ( 2  /  pi )  x.  ( (
pi  /  2 )  x.  ( 1  / 
(  seq  1 (  x.  ,  F ) `
 j ) ) ) ) )
130 eqidd 2437 . . . . . . . . 9  |-  ( j  e.  NN  ->  (
n  e.  NN  |->  ( 1  /  (  seq  1 (  x.  ,  F ) `  n
) ) )  =  ( n  e.  NN  |->  ( 1  /  (  seq  1 (  x.  ,  F ) `  n
) ) ) )
131113oveq2d 6097 . . . . . . . . . 10  |-  ( n  =  j  ->  (
1  /  (  seq  1 (  x.  ,  F ) `  n
) )  =  ( 1  /  (  seq  1 (  x.  ,  F ) `  j
) ) )
132131adantl 453 . . . . . . . . 9  |-  ( ( j  e.  NN  /\  n  =  j )  ->  ( 1  /  (  seq  1 (  x.  ,  F ) `  n
) )  =  ( 1  /  (  seq  1 (  x.  ,  F ) `  j
) ) )
133 id 20 . . . . . . . . 9  |-  ( j  e.  NN  ->  j  e.  NN )
134115rpreccld 10658 . . . . . . . . 9  |-  ( j  e.  NN  ->  (
1  /  (  seq  1 (  x.  ,  F ) `  j
) )  e.  RR+ )
135130, 132, 133, 134fvmptd 5810 . . . . . . . 8  |-  ( j  e.  NN  ->  (
( n  e.  NN  |->  ( 1  /  (  seq  1 (  x.  ,  F ) `  n
) ) ) `  j )  =  ( 1  /  (  seq  1 (  x.  ,  F ) `  j
) ) )
136 eqidd 2437 . . . . . . . . . 10  |-  ( j  e.  NN  ->  (
n  e.  NN  |->  ( ( pi  /  2
)  x.  ( 1  /  (  seq  1
(  x.  ,  F
) `  n )
) ) )  =  ( n  e.  NN  |->  ( ( pi  / 
2 )  x.  (
1  /  (  seq  1 (  x.  ,  F ) `  n
) ) ) ) )
137132oveq2d 6097 . . . . . . . . . 10  |-  ( ( j  e.  NN  /\  n  =  j )  ->  ( ( pi  / 
2 )  x.  (
1  /  (  seq  1 (  x.  ,  F ) `  n
) ) )  =  ( ( pi  / 
2 )  x.  (
1  /  (  seq  1 (  x.  ,  F ) `  j
) ) ) )
138126, 127mulcld 9108 . . . . . . . . . 10  |-  ( j  e.  NN  ->  (
( pi  /  2
)  x.  ( 1  /  (  seq  1
(  x.  ,  F
) `  j )
) )  e.  CC )
139136, 137, 133, 138fvmptd 5810 . . . . . . . . 9  |-  ( j  e.  NN  ->  (
( n  e.  NN  |->  ( ( pi  / 
2 )  x.  (
1  /  (  seq  1 (  x.  ,  F ) `  n
) ) ) ) `
 j )  =  ( ( pi  / 
2 )  x.  (
1  /  (  seq  1 (  x.  ,  F ) `  j
) ) ) )
140139oveq2d 6097 . . . . . . . 8  |-  ( j  e.  NN  ->  (
( 2  /  pi )  x.  ( (
n  e.  NN  |->  ( ( pi  /  2
)  x.  ( 1  /  (  seq  1
(  x.  ,  F
) `  n )
) ) ) `  j ) )  =  ( ( 2  /  pi )  x.  (
( pi  /  2
)  x.  ( 1  /  (  seq  1
(  x.  ,  F
) `  j )
) ) ) )
141129, 135, 1403eqtr4d 2478 . . . . . . 7  |-  ( j  e.  NN  ->  (
( n  e.  NN  |->  ( 1  /  (  seq  1 (  x.  ,  F ) `  n
) ) ) `  j )  =  ( ( 2  /  pi )  x.  ( (
n  e.  NN  |->  ( ( pi  /  2
)  x.  ( 1  /  (  seq  1
(  x.  ,  F
) `  n )
) ) ) `  j ) ) )
142141adantl 453 . . . . . 6  |-  ( (  T.  /\  j  e.  NN )  ->  (
( n  e.  NN  |->  ( 1  /  (  seq  1 (  x.  ,  F ) `  n
) ) ) `  j )  =  ( ( 2  /  pi )  x.  ( (
n  e.  NN  |->  ( ( pi  /  2
)  x.  ( 1  /  (  seq  1
(  x.  ,  F
) `  n )
) ) ) `  j ) ) )
1431, 3, 10, 19, 22, 112, 142climmulc2 12430 . . . . 5  |-  (  T. 
->  ( n  e.  NN  |->  ( 1  /  (  seq  1 (  x.  ,  F ) `  n
) ) )  ~~>  ( ( 2  /  pi )  x.  1 ) )
14411, 14, 17divcli 9756 . . . . . 6  |-  ( 2  /  pi )  e.  CC
145144mulid1i 9092 . . . . 5  |-  ( ( 2  /  pi )  x.  1 )  =  ( 2  /  pi )
146143, 145syl6breq 4251 . . . 4  |-  (  T. 
->  ( n  e.  NN  |->  ( 1  /  (  seq  1 (  x.  ,  F ) `  n
) ) )  ~~>  ( 2  /  pi ) )
147 2ne0 10083 . . . . . 6  |-  2  =/=  0
14811, 14, 147, 17divne0i 9762 . . . . 5  |-  ( 2  /  pi )  =/=  0
149148a1i 11 . . . 4  |-  (  T. 
->  ( 2  /  pi )  =/=  0 )
150135, 127eqeltrd 2510 . . . . . 6  |-  ( j  e.  NN  ->  (
( n  e.  NN  |->  ( 1  /  (  seq  1 (  x.  ,  F ) `  n
) ) ) `  j )  e.  CC )
151116, 117recne0d 9784 . . . . . . . 8  |-  ( j  e.  NN  ->  (
1  /  (  seq  1 (  x.  ,  F ) `  j
) )  =/=  0
)
152135, 151eqnetrd 2619 . . . . . . 7  |-  ( j  e.  NN  ->  (
( n  e.  NN  |->  ( 1  /  (  seq  1 (  x.  ,  F ) `  n
) ) ) `  j )  =/=  0
)
153 elsni 3838 . . . . . . . 8  |-  ( ( ( n  e.  NN  |->  ( 1  /  (  seq  1 (  x.  ,  F ) `  n
) ) ) `  j )  e.  {
0 }  ->  (
( n  e.  NN  |->  ( 1  /  (  seq  1 (  x.  ,  F ) `  n
) ) ) `  j )  =  0 )
154153necon3ai 2644 . . . . . . 7  |-  ( ( ( n  e.  NN  |->  ( 1  /  (  seq  1 (  x.  ,  F ) `  n
) ) ) `  j )  =/=  0  ->  -.  ( ( n  e.  NN  |->  ( 1  /  (  seq  1
(  x.  ,  F
) `  n )
) ) `  j
)  e.  { 0 } )
155152, 154syl 16 . . . . . 6  |-  ( j  e.  NN  ->  -.  ( ( n  e.  NN  |->  ( 1  / 
(  seq  1 (  x.  ,  F ) `
 n ) ) ) `  j )  e.  { 0 } )
156150, 155eldifd 3331 . . . . 5  |-  ( j  e.  NN  ->  (
( n  e.  NN  |->  ( 1  /  (  seq  1 (  x.  ,  F ) `  n
) ) ) `  j )  e.  ( CC  \  { 0 } ) )
157156adantl 453 . . . 4  |-  ( (  T.  /\  j  e.  NN )  ->  (
( n  e.  NN  |->  ( 1  /  (  seq  1 (  x.  ,  F ) `  n
) ) ) `  j )  e.  ( CC  \  { 0 } ) )
158116, 117recrecd 9787 . . . . . 6  |-  ( j  e.  NN  ->  (
1  /  ( 1  /  (  seq  1
(  x.  ,  F
) `  j )
) )  =  (  seq  1 (  x.  ,  F ) `  j ) )
159130, 132, 133, 127fvmptd 5810 . . . . . . 7  |-  ( j  e.  NN  ->  (
( n  e.  NN  |->  ( 1  /  (  seq  1 (  x.  ,  F ) `  n
) ) ) `  j )  =  ( 1  /  (  seq  1 (  x.  ,  F ) `  j
) ) )
160159oveq2d 6097 . . . . . 6  |-  ( j  e.  NN  ->  (
1  /  ( ( n  e.  NN  |->  ( 1  /  (  seq  1 (  x.  ,  F ) `  n
) ) ) `  j ) )  =  ( 1  /  (
1  /  (  seq  1 (  x.  ,  F ) `  j
) ) ) )
161 wallispi.2 . . . . . . 7  |-  W  =  ( n  e.  NN  |->  (  seq  1 (  x.  ,  F ) `  n ) )
162113, 161, 105fvmpt3 5808 . . . . . 6  |-  ( j  e.  NN  ->  ( W `  j )  =  (  seq  1
(  x.  ,  F
) `  j )
)
163158, 160, 1623eqtr4rd 2479 . . . . 5  |-  ( j  e.  NN  ->  ( W `  j )  =  ( 1  / 
( ( n  e.  NN  |->  ( 1  / 
(  seq  1 (  x.  ,  F ) `
 n ) ) ) `  j ) ) )
164163adantl 453 . . . 4  |-  ( (  T.  /\  j  e.  NN )  ->  ( W `  j )  =  ( 1  / 
( ( n  e.  NN  |->  ( 1  / 
(  seq  1 (  x.  ,  F ) `
 n ) ) ) `  j ) ) )
16520mptex 5966 . . . . . 6  |-  ( n  e.  NN  |->  (  seq  1 (  x.  ,  F ) `  n
) )  e.  _V
166161, 165eqeltri 2506 . . . . 5  |-  W  e. 
_V
167166a1i 11 . . . 4  |-  (  T. 
->  W  e.  _V )
1681, 3, 146, 149, 157, 164, 167climrec 27705 . . 3  |-  (  T. 
->  W  ~~>  ( 1  /  ( 2  /  pi ) ) )
169168trud 1332 . 2  |-  W  ~~>  ( 1  /  ( 2  /  pi ) )
170 recdiv 9720 . . 3  |-  ( ( ( 2  e.  CC  /\  2  =/=  0 )  /\  ( pi  e.  CC  /\  pi  =/=  0
) )  ->  (
1  /  ( 2  /  pi ) )  =  ( pi  / 
2 ) )
17111, 147, 14, 17, 170mp4an 655 . 2  |-  ( 1  /  ( 2  /  pi ) )  =  ( pi  /  2 )
172169, 171breqtri 4235 1  |-  W  ~~>  ( pi 
/  2 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 359    T. wtru 1325    = wceq 1652    e. wcel 1725    =/= wne 2599   _Vcvv 2956    \ cdif 3317   {csn 3814   class class class wbr 4212    e. cmpt 4266   -->wf 5450   ` cfv 5454  (class class class)co 6081   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    + caddc 8993    x. cmul 8995    < clt 9120    <_ cle 9121    - cmin 9291    / cdiv 9677   NNcn 10000   2c2 10049   NN0cn0 10221   ZZcz 10282   ZZ>=cuz 10488   RR+crp 10612   (,)cioo 10916   ...cfz 11043    seq cseq 11323   ^cexp 11382    ~~> cli 12278   sincsin 12666   picpi 12669   S.citg 19510
This theorem is referenced by:  wallispi2  27798
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cc 8315  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-disj 4183  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-ofr 6306  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-omul 6729  df-er 6905  df-map 7020  df-pm 7021  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-acn 7829  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ioo 10920  df-ioc 10921  df-ico 10922  df-icc 10923  df-fz 11044  df-fzo 11136  df-fl 11202  df-mod 11251  df-seq 11324  df-exp 11383  df-fac 11567  df-bc 11594  df-hash 11619  df-shft 11882  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-limsup 12265  df-clim 12282  df-rlim 12283  df-sum 12480  df-ef 12670  df-sin 12672  df-cos 12673  df-pi 12675  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-hom 13553  df-cco 13554  df-rest 13650  df-topn 13651  df-topgen 13667  df-pt 13668  df-prds 13671  df-xrs 13726  df-0g 13727  df-gsum 13728  df-qtop 13733  df-imas 13734  df-xps 13736  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-submnd 14739  df-mulg 14815  df-cntz 15116  df-cmn 15414  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-fbas 16699  df-fg 16700  df-cnfld 16704  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cld 17083  df-ntr 17084  df-cls 17085  df-nei 17162  df-lp 17200  df-perf 17201  df-cn 17291  df-cnp 17292  df-haus 17379  df-cmp 17450  df-tx 17594  df-hmeo 17787  df-fil 17878  df-fm 17970  df-flim 17971  df-flf 17972  df-xms 18350  df-ms 18351  df-tms 18352  df-cncf 18908  df-ovol 19361  df-vol 19362  df-mbf 19512  df-itg1 19513  df-itg2 19514  df-ibl 19515  df-itg 19516  df-0p 19562  df-limc 19753  df-dv 19754
  Copyright terms: Public domain W3C validator