Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispi2 Unicode version

Theorem wallispi2 27491
Description: An alternative version of Wallis' formula for π ; this second formula uses factorials and it is later used to proof Stirling's approximation formula. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypothesis
Ref Expression
wallispi2.1  |-  V  =  ( n  e.  NN  |->  ( ( ( ( 2 ^ ( 4  x.  n ) )  x.  ( ( ! `
 n ) ^
4 ) )  / 
( ( ! `  ( 2  x.  n
) ) ^ 2 ) )  /  (
( 2  x.  n
)  +  1 ) ) )
Assertion
Ref Expression
wallispi2  |-  V  ~~>  ( pi 
/  2 )

Proof of Theorem wallispi2
Dummy variables  k  m  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2388 . 2  |-  ( k  e.  NN  |->  ( ( ( 2  x.  k
)  /  ( ( 2  x.  k )  -  1 ) )  x.  ( ( 2  x.  k )  / 
( ( 2  x.  k )  +  1 ) ) ) )  =  ( k  e.  NN  |->  ( ( ( 2  x.  k )  /  ( ( 2  x.  k )  - 
1 ) )  x.  ( ( 2  x.  k )  /  (
( 2  x.  k
)  +  1 ) ) ) )
2 ax-1cn 8982 . . . . . . 7  |-  1  e.  CC
32a1i 11 . . . . . 6  |-  ( n  e.  NN  ->  1  e.  CC )
4 2cn 10003 . . . . . . . . 9  |-  2  e.  CC
54a1i 11 . . . . . . . 8  |-  ( n  e.  NN  ->  2  e.  CC )
6 nncn 9941 . . . . . . . 8  |-  ( n  e.  NN  ->  n  e.  CC )
75, 6mulcld 9042 . . . . . . 7  |-  ( n  e.  NN  ->  (
2  x.  n )  e.  CC )
87, 3addcld 9041 . . . . . 6  |-  ( n  e.  NN  ->  (
( 2  x.  n
)  +  1 )  e.  CC )
9 elnnuz 10455 . . . . . . . 8  |-  ( n  e.  NN  <->  n  e.  ( ZZ>= `  1 )
)
109biimpi 187 . . . . . . 7  |-  ( n  e.  NN  ->  n  e.  ( ZZ>= `  1 )
)
11 eqidd 2389 . . . . . . . . . 10  |-  ( m  e.  ( 1 ... n )  ->  (
k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  /  ( ( ( 2  x.  k
)  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) )  =  ( k  e.  NN  |->  ( ( ( 2  x.  k
) ^ 4 )  /  ( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  - 
1 ) ) ^
2 ) ) ) )
12 simpr 448 . . . . . . . . . . . . 13  |-  ( ( m  e.  ( 1 ... n )  /\  k  =  m )  ->  k  =  m )
1312oveq2d 6037 . . . . . . . . . . . 12  |-  ( ( m  e.  ( 1 ... n )  /\  k  =  m )  ->  ( 2  x.  k
)  =  ( 2  x.  m ) )
1413oveq1d 6036 . . . . . . . . . . 11  |-  ( ( m  e.  ( 1 ... n )  /\  k  =  m )  ->  ( ( 2  x.  k ) ^ 4 )  =  ( ( 2  x.  m ) ^ 4 ) )
1513oveq1d 6036 . . . . . . . . . . . . 13  |-  ( ( m  e.  ( 1 ... n )  /\  k  =  m )  ->  ( ( 2  x.  k )  -  1 )  =  ( ( 2  x.  m )  -  1 ) )
1613, 15oveq12d 6039 . . . . . . . . . . . 12  |-  ( ( m  e.  ( 1 ... n )  /\  k  =  m )  ->  ( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) )  =  ( ( 2  x.  m )  x.  ( ( 2  x.  m )  - 
1 ) ) )
1716oveq1d 6036 . . . . . . . . . . 11  |-  ( ( m  e.  ( 1 ... n )  /\  k  =  m )  ->  ( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 )  =  ( ( ( 2  x.  m
)  x.  ( ( 2  x.  m )  -  1 ) ) ^ 2 ) )
1814, 17oveq12d 6039 . . . . . . . . . 10  |-  ( ( m  e.  ( 1 ... n )  /\  k  =  m )  ->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) )  =  ( ( ( 2  x.  m
) ^ 4 )  /  ( ( ( 2  x.  m )  x.  ( ( 2  x.  m )  - 
1 ) ) ^
2 ) ) )
19 elfznn 11013 . . . . . . . . . 10  |-  ( m  e.  ( 1 ... n )  ->  m  e.  NN )
204a1i 11 . . . . . . . . . . . . 13  |-  ( m  e.  ( 1 ... n )  ->  2  e.  CC )
2119nncnd 9949 . . . . . . . . . . . . 13  |-  ( m  e.  ( 1 ... n )  ->  m  e.  CC )
2220, 21mulcld 9042 . . . . . . . . . . . 12  |-  ( m  e.  ( 1 ... n )  ->  (
2  x.  m )  e.  CC )
23 4nn0 10173 . . . . . . . . . . . . 13  |-  4  e.  NN0
2423a1i 11 . . . . . . . . . . . 12  |-  ( m  e.  ( 1 ... n )  ->  4  e.  NN0 )
2522, 24expcld 11451 . . . . . . . . . . 11  |-  ( m  e.  ( 1 ... n )  ->  (
( 2  x.  m
) ^ 4 )  e.  CC )
262a1i 11 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 ... n )  ->  1  e.  CC )
2722, 26subcld 9344 . . . . . . . . . . . . 13  |-  ( m  e.  ( 1 ... n )  ->  (
( 2  x.  m
)  -  1 )  e.  CC )
2822, 27mulcld 9042 . . . . . . . . . . . 12  |-  ( m  e.  ( 1 ... n )  ->  (
( 2  x.  m
)  x.  ( ( 2  x.  m )  -  1 ) )  e.  CC )
2928sqcld 11449 . . . . . . . . . . 11  |-  ( m  e.  ( 1 ... n )  ->  (
( ( 2  x.  m )  x.  (
( 2  x.  m
)  -  1 ) ) ^ 2 )  e.  CC )
30 2ne0 10016 . . . . . . . . . . . . . . 15  |-  2  =/=  0
3130a1i 11 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 ... n )  ->  2  =/=  0 )
3219nnne0d 9977 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 ... n )  ->  m  =/=  0 )
3320, 21, 31, 32mulne0d 9607 . . . . . . . . . . . . 13  |-  ( m  e.  ( 1 ... n )  ->  (
2  x.  m )  =/=  0 )
34 1re 9024 . . . . . . . . . . . . . . . 16  |-  1  e.  RR
3534a1i 11 . . . . . . . . . . . . . . 15  |-  ( m  e.  ( 1 ... n )  ->  1  e.  RR )
36 2re 10002 . . . . . . . . . . . . . . . . . 18  |-  2  e.  RR
3736a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( 1 ... n )  ->  2  e.  RR )
3837, 35remulcld 9050 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ( 1 ... n )  ->  (
2  x.  1 )  e.  RR )
3919nnred 9948 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( 1 ... n )  ->  m  e.  RR )
4037, 39remulcld 9050 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ( 1 ... n )  ->  (
2  x.  m )  e.  RR )
41 1lt2 10075 . . . . . . . . . . . . . . . . . 18  |-  1  <  2
4241a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( 1 ... n )  ->  1  <  2 )
434mulid1i 9026 . . . . . . . . . . . . . . . . 17  |-  ( 2  x.  1 )  =  2
4442, 43syl6breqr 4194 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ( 1 ... n )  ->  1  <  ( 2  x.  1 ) )
45 0re 9025 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  RR
46 2pos 10015 . . . . . . . . . . . . . . . . . . 19  |-  0  <  2
4745, 36, 46ltleii 9128 . . . . . . . . . . . . . . . . . 18  |-  0  <_  2
4847a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( 1 ... n )  ->  0  <_  2 )
49 elfzle1 10993 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( 1 ... n )  ->  1  <_  m )
5035, 39, 37, 48, 49lemul2ad 9884 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ( 1 ... n )  ->  (
2  x.  1 )  <_  ( 2  x.  m ) )
5135, 38, 40, 44, 50ltletrd 9163 . . . . . . . . . . . . . . 15  |-  ( m  e.  ( 1 ... n )  ->  1  <  ( 2  x.  m
) )
5235, 51gtned 9141 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 ... n )  ->  (
2  x.  m )  =/=  1 )
5322, 26, 52subne0d 9353 . . . . . . . . . . . . 13  |-  ( m  e.  ( 1 ... n )  ->  (
( 2  x.  m
)  -  1 )  =/=  0 )
5422, 27, 33, 53mulne0d 9607 . . . . . . . . . . . 12  |-  ( m  e.  ( 1 ... n )  ->  (
( 2  x.  m
)  x.  ( ( 2  x.  m )  -  1 ) )  =/=  0 )
55 2z 10245 . . . . . . . . . . . . 13  |-  2  e.  ZZ
5655a1i 11 . . . . . . . . . . . 12  |-  ( m  e.  ( 1 ... n )  ->  2  e.  ZZ )
5728, 54, 56expne0d 11457 . . . . . . . . . . 11  |-  ( m  e.  ( 1 ... n )  ->  (
( ( 2  x.  m )  x.  (
( 2  x.  m
)  -  1 ) ) ^ 2 )  =/=  0 )
5825, 29, 57divcld 9723 . . . . . . . . . 10  |-  ( m  e.  ( 1 ... n )  ->  (
( ( 2  x.  m ) ^ 4 )  /  ( ( ( 2  x.  m
)  x.  ( ( 2  x.  m )  -  1 ) ) ^ 2 ) )  e.  CC )
5911, 18, 19, 58fvmptd 5750 . . . . . . . . 9  |-  ( m  e.  ( 1 ... n )  ->  (
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) `  m
)  =  ( ( ( 2  x.  m
) ^ 4 )  /  ( ( ( 2  x.  m )  x.  ( ( 2  x.  m )  - 
1 ) ) ^
2 ) ) )
6059, 58eqeltrd 2462 . . . . . . . 8  |-  ( m  e.  ( 1 ... n )  ->  (
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) `  m
)  e.  CC )
6160adantl 453 . . . . . . 7  |-  ( ( n  e.  NN  /\  m  e.  ( 1 ... n ) )  ->  ( ( k  e.  NN  |->  ( ( ( 2  x.  k
) ^ 4 )  /  ( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  - 
1 ) ) ^
2 ) ) ) `
 m )  e.  CC )
62 mulcl 9008 . . . . . . . 8  |-  ( ( m  e.  CC  /\  w  e.  CC )  ->  ( m  x.  w
)  e.  CC )
6362adantl 453 . . . . . . 7  |-  ( ( n  e.  NN  /\  ( m  e.  CC  /\  w  e.  CC ) )  ->  ( m  x.  w )  e.  CC )
6410, 61, 63seqcl 11271 . . . . . 6  |-  ( n  e.  NN  ->  (  seq  1 (  x.  , 
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) ) `  n )  e.  CC )
65 2nn 10066 . . . . . . . . . 10  |-  2  e.  NN
6665a1i 11 . . . . . . . . 9  |-  ( n  e.  NN  ->  2  e.  NN )
67 id 20 . . . . . . . . 9  |-  ( n  e.  NN  ->  n  e.  NN )
6866, 67nnmulcld 9980 . . . . . . . 8  |-  ( n  e.  NN  ->  (
2  x.  n )  e.  NN )
6968peano2nnd 9950 . . . . . . 7  |-  ( n  e.  NN  ->  (
( 2  x.  n
)  +  1 )  e.  NN )
7069nnne0d 9977 . . . . . 6  |-  ( n  e.  NN  ->  (
( 2  x.  n
)  +  1 )  =/=  0 )
713, 8, 64, 70div32d 9746 . . . . 5  |-  ( n  e.  NN  ->  (
( 1  /  (
( 2  x.  n
)  +  1 ) )  x.  (  seq  1 (  x.  , 
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) ) `  n ) )  =  ( 1  x.  (
(  seq  1 (  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k
) ^ 4 )  /  ( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  - 
1 ) ) ^
2 ) ) ) ) `  n )  /  ( ( 2  x.  n )  +  1 ) ) ) )
7264, 8, 70divcld 9723 . . . . . 6  |-  ( n  e.  NN  ->  (
(  seq  1 (  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k
) ^ 4 )  /  ( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  - 
1 ) ) ^
2 ) ) ) ) `  n )  /  ( ( 2  x.  n )  +  1 ) )  e.  CC )
7372mulid2d 9040 . . . . 5  |-  ( n  e.  NN  ->  (
1  x.  ( (  seq  1 (  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  / 
( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) ) ) `
 n )  / 
( ( 2  x.  n )  +  1 ) ) )  =  ( (  seq  1
(  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  /  ( ( ( 2  x.  k
)  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) ) ) `  n
)  /  ( ( 2  x.  n )  +  1 ) ) )
74 wallispi2lem2 27490 . . . . . 6  |-  ( n  e.  NN  ->  (  seq  1 (  x.  , 
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) ) `  n )  =  ( ( ( 2 ^ ( 4  x.  n
) )  x.  (
( ! `  n
) ^ 4 ) )  /  ( ( ! `  ( 2  x.  n ) ) ^ 2 ) ) )
7574oveq1d 6036 . . . . 5  |-  ( n  e.  NN  ->  (
(  seq  1 (  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k
) ^ 4 )  /  ( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  - 
1 ) ) ^
2 ) ) ) ) `  n )  /  ( ( 2  x.  n )  +  1 ) )  =  ( ( ( ( 2 ^ ( 4  x.  n ) )  x.  ( ( ! `
 n ) ^
4 ) )  / 
( ( ! `  ( 2  x.  n
) ) ^ 2 ) )  /  (
( 2  x.  n
)  +  1 ) ) )
7671, 73, 753eqtrd 2424 . . . 4  |-  ( n  e.  NN  ->  (
( 1  /  (
( 2  x.  n
)  +  1 ) )  x.  (  seq  1 (  x.  , 
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) ) `  n ) )  =  ( ( ( ( 2 ^ ( 4  x.  n ) )  x.  ( ( ! `
 n ) ^
4 ) )  / 
( ( ! `  ( 2  x.  n
) ) ^ 2 ) )  /  (
( 2  x.  n
)  +  1 ) ) )
7776mpteq2ia 4233 . . 3  |-  ( n  e.  NN  |->  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  (  seq  1
(  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  /  ( ( ( 2  x.  k
)  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) ) ) `  n
) ) )  =  ( n  e.  NN  |->  ( ( ( ( 2 ^ ( 4  x.  n ) )  x.  ( ( ! `
 n ) ^
4 ) )  / 
( ( ! `  ( 2  x.  n
) ) ^ 2 ) )  /  (
( 2  x.  n
)  +  1 ) ) )
78 wallispi2lem1 27489 . . . 4  |-  ( n  e.  NN  ->  (  seq  1 (  x.  , 
( k  e.  NN  |->  ( ( ( 2  x.  k )  / 
( ( 2  x.  k )  -  1 ) )  x.  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) ) ) ) ) `  n )  =  ( ( 1  /  (
( 2  x.  n
)  +  1 ) )  x.  (  seq  1 (  x.  , 
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) ) `  n ) ) )
7978mpteq2ia 4233 . . 3  |-  ( n  e.  NN  |->  (  seq  1 (  x.  , 
( k  e.  NN  |->  ( ( ( 2  x.  k )  / 
( ( 2  x.  k )  -  1 ) )  x.  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) ) ) ) ) `  n ) )  =  ( n  e.  NN  |->  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (  seq  1 (  x.  , 
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) ) `  n ) ) )
80 wallispi2.1 . . 3  |-  V  =  ( n  e.  NN  |->  ( ( ( ( 2 ^ ( 4  x.  n ) )  x.  ( ( ! `
 n ) ^
4 ) )  / 
( ( ! `  ( 2  x.  n
) ) ^ 2 ) )  /  (
( 2  x.  n
)  +  1 ) ) )
8177, 79, 803eqtr4ri 2419 . 2  |-  V  =  ( n  e.  NN  |->  (  seq  1 (  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k )  /  ( ( 2  x.  k )  - 
1 ) )  x.  ( ( 2  x.  k )  /  (
( 2  x.  k
)  +  1 ) ) ) ) ) `
 n ) )
821, 81wallispi 27488 1  |-  V  ~~>  ( pi 
/  2 )
Colors of variables: wff set class
Syntax hints:    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2551   class class class wbr 4154    e. cmpt 4208   ` cfv 5395  (class class class)co 6021   CCcc 8922   RRcr 8923   0cc0 8924   1c1 8925    + caddc 8927    x. cmul 8929    < clt 9054    <_ cle 9055    - cmin 9224    / cdiv 9610   NNcn 9933   2c2 9982   4c4 9984   NN0cn0 10154   ZZcz 10215   ZZ>=cuz 10421   ...cfz 10976    seq cseq 11251   ^cexp 11310   !cfa 11494    ~~> cli 12206   picpi 12597
This theorem is referenced by:  stirlinglem15  27506
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-inf2 7530  ax-cc 8249  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002  ax-addf 9003  ax-mulf 9004
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-iin 4039  df-disj 4125  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-se 4484  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-isom 5404  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-of 6245  df-ofr 6246  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-2o 6662  df-oadd 6665  df-omul 6666  df-er 6842  df-map 6957  df-pm 6958  df-ixp 7001  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-fi 7352  df-sup 7382  df-oi 7413  df-card 7760  df-acn 7763  df-cda 7982  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-4 9993  df-5 9994  df-6 9995  df-7 9996  df-8 9997  df-9 9998  df-10 9999  df-n0 10155  df-z 10216  df-dec 10316  df-uz 10422  df-q 10508  df-rp 10546  df-xneg 10643  df-xadd 10644  df-xmul 10645  df-ioo 10853  df-ioc 10854  df-ico 10855  df-icc 10856  df-fz 10977  df-fzo 11067  df-fl 11130  df-mod 11179  df-seq 11252  df-exp 11311  df-fac 11495  df-bc 11522  df-hash 11547  df-shft 11810  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-limsup 12193  df-clim 12210  df-rlim 12211  df-sum 12408  df-ef 12598  df-sin 12600  df-cos 12601  df-pi 12603  df-struct 13399  df-ndx 13400  df-slot 13401  df-base 13402  df-sets 13403  df-ress 13404  df-plusg 13470  df-mulr 13471  df-starv 13472  df-sca 13473  df-vsca 13474  df-tset 13476  df-ple 13477  df-ds 13479  df-unif 13480  df-hom 13481  df-cco 13482  df-rest 13578  df-topn 13579  df-topgen 13595  df-pt 13596  df-prds 13599  df-xrs 13654  df-0g 13655  df-gsum 13656  df-qtop 13661  df-imas 13662  df-xps 13664  df-mre 13739  df-mrc 13740  df-acs 13742  df-mnd 14618  df-submnd 14667  df-mulg 14743  df-cntz 15044  df-cmn 15342  df-xmet 16620  df-met 16621  df-bl 16622  df-mopn 16623  df-fbas 16624  df-fg 16625  df-cnfld 16628  df-top 16887  df-bases 16889  df-topon 16890  df-topsp 16891  df-cld 17007  df-ntr 17008  df-cls 17009  df-nei 17086  df-lp 17124  df-perf 17125  df-cn 17214  df-cnp 17215  df-haus 17302  df-cmp 17373  df-tx 17516  df-hmeo 17709  df-fil 17800  df-fm 17892  df-flim 17893  df-flf 17894  df-xms 18260  df-ms 18261  df-tms 18262  df-cncf 18780  df-ovol 19229  df-vol 19230  df-mbf 19380  df-itg1 19381  df-itg2 19382  df-ibl 19383  df-itg 19384  df-0p 19430  df-limc 19621  df-dv 19622
  Copyright terms: Public domain W3C validator