Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispilem1 Structured version   Unicode version

Theorem wallispilem1 27745
Description:  I is monotone: increasing the exponent, the integral decreases. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
wallispilem1.1  |-  I  =  ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x )
wallispilem1.2  |-  ( ph  ->  N  e.  NN0 )
Assertion
Ref Expression
wallispilem1  |-  ( ph  ->  ( I `  ( N  +  1 ) )  <_  ( I `  N ) )
Distinct variable groups:    x, n, N    ph, x
Allowed substitution hints:    ph( n)    I( x, n)

Proof of Theorem wallispilem1
StepHypRef Expression
1 0re 9081 . . . . 5  |-  0  e.  RR
21a1i 11 . . . 4  |-  ( ph  ->  0  e.  RR )
3 pire 20362 . . . . 5  |-  pi  e.  RR
43a1i 11 . . . 4  |-  ( ph  ->  pi  e.  RR )
5 wallispilem1.2 . . . . 5  |-  ( ph  ->  N  e.  NN0 )
6 peano2nn0 10250 . . . . 5  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
75, 6syl 16 . . . 4  |-  ( ph  ->  ( N  +  1 )  e.  NN0 )
8 iblioosinexp 27678 . . . 4  |-  ( ( 0  e.  RR  /\  pi  e.  RR  /\  ( N  +  1 )  e.  NN0 )  -> 
( x  e.  ( 0 (,) pi ) 
|->  ( ( sin `  x
) ^ ( N  +  1 ) ) )  e.  L ^1 )
92, 4, 7, 8syl3anc 1184 . . 3  |-  ( ph  ->  ( x  e.  ( 0 (,) pi ) 
|->  ( ( sin `  x
) ^ ( N  +  1 ) ) )  e.  L ^1 )
10 iblioosinexp 27678 . . . 4  |-  ( ( 0  e.  RR  /\  pi  e.  RR  /\  N  e.  NN0 )  ->  (
x  e.  ( 0 (,) pi )  |->  ( ( sin `  x
) ^ N ) )  e.  L ^1 )
112, 4, 5, 10syl3anc 1184 . . 3  |-  ( ph  ->  ( x  e.  ( 0 (,) pi ) 
|->  ( ( sin `  x
) ^ N ) )  e.  L ^1 )
12 elioore 10936 . . . . . 6  |-  ( x  e.  ( 0 (,) pi )  ->  x  e.  RR )
1312resincld 12734 . . . . 5  |-  ( x  e.  ( 0 (,) pi )  ->  ( sin `  x )  e.  RR )
1413adantl 453 . . . 4  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  ( sin `  x )  e.  RR )
157adantr 452 . . . 4  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  ( N  +  1 )  e.  NN0 )
1614, 15reexpcld 11530 . . 3  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ ( N  +  1 ) )  e.  RR )
175adantr 452 . . . 4  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  N  e.  NN0 )
1814, 17reexpcld 11530 . . 3  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ N )  e.  RR )
195nn0zd 10363 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
20 uzid 10490 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  N )
)
2119, 20syl 16 . . . . . 6  |-  ( ph  ->  N  e.  ( ZZ>= `  N ) )
22 peano2uz 10520 . . . . . 6  |-  ( N  e.  ( ZZ>= `  N
)  ->  ( N  +  1 )  e.  ( ZZ>= `  N )
)
2321, 22syl 16 . . . . 5  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  N ) )
2423adantr 452 . . . 4  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  ( N  +  1 )  e.  ( ZZ>= `  N
) )
2513, 1jctil 524 . . . . . 6  |-  ( x  e.  ( 0 (,) pi )  ->  (
0  e.  RR  /\  ( sin `  x )  e.  RR ) )
26 sinq12gt0 20405 . . . . . 6  |-  ( x  e.  ( 0 (,) pi )  ->  0  <  ( sin `  x
) )
27 ltle 9153 . . . . . 6  |-  ( ( 0  e.  RR  /\  ( sin `  x )  e.  RR )  -> 
( 0  <  ( sin `  x )  -> 
0  <_  ( sin `  x ) ) )
2825, 26, 27sylc 58 . . . . 5  |-  ( x  e.  ( 0 (,) pi )  ->  0  <_  ( sin `  x
) )
2928adantl 453 . . . 4  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  0  <_  ( sin `  x
) )
30 sinbnd 12771 . . . . . . 7  |-  ( x  e.  RR  ->  ( -u 1  <_  ( sin `  x )  /\  ( sin `  x )  <_ 
1 ) )
3112, 30syl 16 . . . . . 6  |-  ( x  e.  ( 0 (,) pi )  ->  ( -u 1  <_  ( sin `  x )  /\  ( sin `  x )  <_ 
1 ) )
3231simprd 450 . . . . 5  |-  ( x  e.  ( 0 (,) pi )  ->  ( sin `  x )  <_ 
1 )
3332adantl 453 . . . 4  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  ( sin `  x )  <_ 
1 )
3414, 17, 24, 29, 33leexp2rd 11546 . . 3  |-  ( (
ph  /\  x  e.  ( 0 (,) pi ) )  ->  (
( sin `  x
) ^ ( N  +  1 ) )  <_  ( ( sin `  x ) ^ N
) )
359, 11, 16, 18, 34itgle 19691 . 2  |-  ( ph  ->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ ( N  + 
1 ) )  _d x  <_  S. (
0 (,) pi ) ( ( sin `  x
) ^ N )  _d x )
36 oveq2 6081 . . . . . 6  |-  ( n  =  ( N  + 
1 )  ->  (
( sin `  x
) ^ n )  =  ( ( sin `  x ) ^ ( N  +  1 ) ) )
3736adantr 452 . . . . 5  |-  ( ( n  =  ( N  +  1 )  /\  x  e.  ( 0 (,) pi ) )  ->  ( ( sin `  x ) ^ n
)  =  ( ( sin `  x ) ^ ( N  + 
1 ) ) )
3837itgeq2dv 19663 . . . 4  |-  ( n  =  ( N  + 
1 )  ->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x  =  S. ( 0 (,) pi ) ( ( sin `  x ) ^ ( N  + 
1 ) )  _d x )
39 wallispilem1.1 . . . 4  |-  I  =  ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x )
40 itgex 19652 . . . 4  |-  S. ( 0 (,) pi ) ( ( sin `  x
) ^ ( N  +  1 ) )  _d x  e.  _V
4138, 39, 40fvmpt 5798 . . 3  |-  ( ( N  +  1 )  e.  NN0  ->  ( I `
 ( N  + 
1 ) )  =  S. ( 0 (,) pi ) ( ( sin `  x ) ^ ( N  + 
1 ) )  _d x )
427, 41syl 16 . 2  |-  ( ph  ->  ( I `  ( N  +  1 ) )  =  S. ( 0 (,) pi ) ( ( sin `  x
) ^ ( N  +  1 ) )  _d x )
43 oveq2 6081 . . . . . 6  |-  ( n  =  N  ->  (
( sin `  x
) ^ n )  =  ( ( sin `  x ) ^ N
) )
4443adantr 452 . . . . 5  |-  ( ( n  =  N  /\  x  e.  ( 0 (,) pi ) )  ->  ( ( sin `  x ) ^ n
)  =  ( ( sin `  x ) ^ N ) )
4544itgeq2dv 19663 . . . 4  |-  ( n  =  N  ->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x  =  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N )  _d x )
46 itgex 19652 . . . 4  |-  S. ( 0 (,) pi ) ( ( sin `  x
) ^ N )  _d x  e.  _V
4745, 39, 46fvmpt 5798 . . 3  |-  ( N  e.  NN0  ->  ( I `
 N )  =  S. ( 0 (,) pi ) ( ( sin `  x ) ^ N )  _d x )
485, 47syl 16 . 2  |-  ( ph  ->  ( I `  N
)  =  S. ( 0 (,) pi ) ( ( sin `  x
) ^ N )  _d x )
4935, 42, 483brtr4d 4234 1  |-  ( ph  ->  ( I `  ( N  +  1 ) )  <_  ( I `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   class class class wbr 4204    e. cmpt 4258   ` cfv 5446  (class class class)co 6073   RRcr 8979   0cc0 8980   1c1 8981    + caddc 8983    < clt 9110    <_ cle 9111   -ucneg 9282   NN0cn0 10211   ZZcz 10272   ZZ>=cuz 10478   (,)cioo 10906   ^cexp 11372   sincsin 12656   picpi 12659   L ^1cibl 19499   S.citg 19500
This theorem is referenced by:  wallispilem5  27749
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7586  ax-cc 8305  ax-cnex 9036  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056  ax-pre-mulgt0 9057  ax-pre-sup 9058  ax-addf 9059  ax-mulf 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-disj 4175  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-ofr 6298  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-omul 6721  df-er 6897  df-map 7012  df-pm 7013  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-sup 7438  df-oi 7469  df-card 7816  df-acn 7819  df-cda 8038  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-sub 9283  df-neg 9284  df-div 9668  df-nn 9991  df-2 10048  df-3 10049  df-4 10050  df-5 10051  df-6 10052  df-7 10053  df-8 10054  df-9 10055  df-10 10056  df-n0 10212  df-z 10273  df-dec 10373  df-uz 10479  df-q 10565  df-rp 10603  df-xneg 10700  df-xadd 10701  df-xmul 10702  df-ioo 10910  df-ioc 10911  df-ico 10912  df-icc 10913  df-fz 11034  df-fzo 11126  df-fl 11192  df-mod 11241  df-seq 11314  df-exp 11373  df-fac 11557  df-bc 11584  df-hash 11609  df-shft 11872  df-cj 11894  df-re 11895  df-im 11896  df-sqr 12030  df-abs 12031  df-limsup 12255  df-clim 12272  df-rlim 12273  df-sum 12470  df-ef 12660  df-sin 12662  df-cos 12663  df-pi 12665  df-struct 13461  df-ndx 13462  df-slot 13463  df-base 13464  df-sets 13465  df-ress 13466  df-plusg 13532  df-mulr 13533  df-starv 13534  df-sca 13535  df-vsca 13536  df-tset 13538  df-ple 13539  df-ds 13541  df-unif 13542  df-hom 13543  df-cco 13544  df-rest 13640  df-topn 13641  df-topgen 13657  df-pt 13658  df-prds 13661  df-xrs 13716  df-0g 13717  df-gsum 13718  df-qtop 13723  df-imas 13724  df-xps 13726  df-mre 13801  df-mrc 13802  df-acs 13804  df-mnd 14680  df-submnd 14729  df-mulg 14805  df-cntz 15106  df-cmn 15404  df-psmet 16684  df-xmet 16685  df-met 16686  df-bl 16687  df-mopn 16688  df-fbas 16689  df-fg 16690  df-cnfld 16694  df-top 16953  df-bases 16955  df-topon 16956  df-topsp 16957  df-cld 17073  df-ntr 17074  df-cls 17075  df-nei 17152  df-lp 17190  df-perf 17191  df-cn 17281  df-cnp 17282  df-haus 17369  df-cmp 17440  df-tx 17584  df-hmeo 17777  df-fil 17868  df-fm 17960  df-flim 17961  df-flf 17962  df-xms 18340  df-ms 18341  df-tms 18342  df-cncf 18898  df-ovol 19351  df-vol 19352  df-mbf 19502  df-itg1 19503  df-itg2 19504  df-ibl 19505  df-itg 19506  df-0p 19552  df-limc 19743  df-dv 19744
  Copyright terms: Public domain W3C validator