Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispilem3 Unicode version

Theorem wallispilem3 27683
Description: I maps to real values (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypothesis
Ref Expression
wallispilem3.1  |-  I  =  ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x )
Assertion
Ref Expression
wallispilem3  |-  ( N  e.  NN0  ->  ( I `
 N )  e.  RR+ )
Distinct variable group:    x, n
Allowed substitution hints:    I( x, n)    N( x, n)

Proof of Theorem wallispilem3
Dummy variables  k  m  y  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4176 . . . . . 6  |-  ( w  =  0  ->  (
m  <_  w  <->  m  <_  0 ) )
21imbi1d 309 . . . . 5  |-  ( w  =  0  ->  (
( m  <_  w  ->  ( I `  m
)  e.  RR+ )  <->  ( m  <_  0  ->  ( I `  m )  e.  RR+ ) ) )
32ralbidv 2686 . . . 4  |-  ( w  =  0  ->  ( A. m  e.  NN0  ( m  <_  w  -> 
( I `  m
)  e.  RR+ )  <->  A. m  e.  NN0  (
m  <_  0  ->  ( I `  m )  e.  RR+ ) ) )
4 breq2 4176 . . . . . 6  |-  ( w  =  y  ->  (
m  <_  w  <->  m  <_  y ) )
54imbi1d 309 . . . . 5  |-  ( w  =  y  ->  (
( m  <_  w  ->  ( I `  m
)  e.  RR+ )  <->  ( m  <_  y  ->  ( I `  m )  e.  RR+ ) ) )
65ralbidv 2686 . . . 4  |-  ( w  =  y  ->  ( A. m  e.  NN0  ( m  <_  w  -> 
( I `  m
)  e.  RR+ )  <->  A. m  e.  NN0  (
m  <_  y  ->  ( I `  m )  e.  RR+ ) ) )
7 breq2 4176 . . . . . 6  |-  ( w  =  ( y  +  1 )  ->  (
m  <_  w  <->  m  <_  ( y  +  1 ) ) )
87imbi1d 309 . . . . 5  |-  ( w  =  ( y  +  1 )  ->  (
( m  <_  w  ->  ( I `  m
)  e.  RR+ )  <->  ( m  <_  ( y  +  1 )  -> 
( I `  m
)  e.  RR+ )
) )
98ralbidv 2686 . . . 4  |-  ( w  =  ( y  +  1 )  ->  ( A. m  e.  NN0  ( m  <_  w  -> 
( I `  m
)  e.  RR+ )  <->  A. m  e.  NN0  (
m  <_  ( y  +  1 )  -> 
( I `  m
)  e.  RR+ )
) )
10 breq2 4176 . . . . . 6  |-  ( w  =  N  ->  (
m  <_  w  <->  m  <_  N ) )
1110imbi1d 309 . . . . 5  |-  ( w  =  N  ->  (
( m  <_  w  ->  ( I `  m
)  e.  RR+ )  <->  ( m  <_  N  ->  ( I `  m )  e.  RR+ ) ) )
1211ralbidv 2686 . . . 4  |-  ( w  =  N  ->  ( A. m  e.  NN0  ( m  <_  w  -> 
( I `  m
)  e.  RR+ )  <->  A. m  e.  NN0  (
m  <_  N  ->  ( I `  m )  e.  RR+ ) ) )
13 simpr 448 . . . . . . . . 9  |-  ( ( m  e.  NN0  /\  m  <_  0 )  ->  m  <_  0 )
14 nn0ge0 10203 . . . . . . . . . 10  |-  ( m  e.  NN0  ->  0  <_  m )
1514adantr 452 . . . . . . . . 9  |-  ( ( m  e.  NN0  /\  m  <_  0 )  -> 
0  <_  m )
16 nn0re 10186 . . . . . . . . . . 11  |-  ( m  e.  NN0  ->  m  e.  RR )
1716adantr 452 . . . . . . . . . 10  |-  ( ( m  e.  NN0  /\  m  <_  0 )  ->  m  e.  RR )
18 0re 9047 . . . . . . . . . . 11  |-  0  e.  RR
1918a1i 11 . . . . . . . . . 10  |-  ( ( m  e.  NN0  /\  m  <_  0 )  -> 
0  e.  RR )
2017, 19letri3d 9171 . . . . . . . . 9  |-  ( ( m  e.  NN0  /\  m  <_  0 )  -> 
( m  =  0  <-> 
( m  <_  0  /\  0  <_  m ) ) )
2113, 15, 20mpbir2and 889 . . . . . . . 8  |-  ( ( m  e.  NN0  /\  m  <_  0 )  ->  m  =  0 )
2221fveq2d 5691 . . . . . . 7  |-  ( ( m  e.  NN0  /\  m  <_  0 )  -> 
( I `  m
)  =  ( I `
 0 ) )
23 wallispilem3.1 . . . . . . . . . 10  |-  I  =  ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x )
2423wallispilem2 27682 . . . . . . . . 9  |-  ( ( I `  0 )  =  pi  /\  (
I `  1 )  =  2  /\  (
m  e.  ( ZZ>= ` 
2 )  ->  (
I `  m )  =  ( ( ( m  -  1 )  /  m )  x.  ( I `  (
m  -  2 ) ) ) ) )
2524simp1i 966 . . . . . . . 8  |-  ( I `
 0 )  =  pi
26 pire 20325 . . . . . . . . 9  |-  pi  e.  RR
27 pipos 20326 . . . . . . . . 9  |-  0  <  pi
2826, 27elrpii 10571 . . . . . . . 8  |-  pi  e.  RR+
2925, 28eqeltri 2474 . . . . . . 7  |-  ( I `
 0 )  e.  RR+
3022, 29syl6eqel 2492 . . . . . 6  |-  ( ( m  e.  NN0  /\  m  <_  0 )  -> 
( I `  m
)  e.  RR+ )
3130ex 424 . . . . 5  |-  ( m  e.  NN0  ->  ( m  <_  0  ->  (
I `  m )  e.  RR+ ) )
3231rgen 2731 . . . 4  |-  A. m  e.  NN0  ( m  <_ 
0  ->  ( I `  m )  e.  RR+ )
33 nfv 1626 . . . . . . 7  |-  F/ m  y  e.  NN0
34 nfra1 2716 . . . . . . 7  |-  F/ m A. m  e.  NN0  ( m  <_  y  -> 
( I `  m
)  e.  RR+ )
3533, 34nfan 1842 . . . . . 6  |-  F/ m
( y  e.  NN0  /\ 
A. m  e.  NN0  ( m  <_  y  -> 
( I `  m
)  e.  RR+ )
)
36 simpllr 736 . . . . . . . . 9  |-  ( ( ( ( y  e. 
NN0  /\  A. m  e.  NN0  ( m  <_ 
y  ->  ( I `  m )  e.  RR+ ) )  /\  m  e.  NN0 )  /\  m  <_  ( y  +  1 ) )  ->  A. m  e.  NN0  ( m  <_ 
y  ->  ( I `  m )  e.  RR+ ) )
37 simplr 732 . . . . . . . . 9  |-  ( ( ( ( y  e. 
NN0  /\  A. m  e.  NN0  ( m  <_ 
y  ->  ( I `  m )  e.  RR+ ) )  /\  m  e.  NN0 )  /\  m  <_  ( y  +  1 ) )  ->  m  e.  NN0 )
38 rsp 2726 . . . . . . . . 9  |-  ( A. m  e.  NN0  ( m  <_  y  ->  (
I `  m )  e.  RR+ )  ->  (
m  e.  NN0  ->  ( m  <_  y  ->  ( I `  m )  e.  RR+ ) ) )
3936, 37, 38sylc 58 . . . . . . . 8  |-  ( ( ( ( y  e. 
NN0  /\  A. m  e.  NN0  ( m  <_ 
y  ->  ( I `  m )  e.  RR+ ) )  /\  m  e.  NN0 )  /\  m  <_  ( y  +  1 ) )  ->  (
m  <_  y  ->  ( I `  m )  e.  RR+ ) )
40 fveq2 5687 . . . . . . . . . . . . 13  |-  ( m  =  1  ->  (
I `  m )  =  ( I ` 
1 ) )
4124simp2i 967 . . . . . . . . . . . . . 14  |-  ( I `
 1 )  =  2
42 2rp 10573 . . . . . . . . . . . . . 14  |-  2  e.  RR+
4341, 42eqeltri 2474 . . . . . . . . . . . . 13  |-  ( I `
 1 )  e.  RR+
4440, 43syl6eqel 2492 . . . . . . . . . . . 12  |-  ( m  =  1  ->  (
I `  m )  e.  RR+ )
4544a1i 11 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
NN0  /\  A. m  e.  NN0  ( m  <_ 
y  ->  ( I `  m )  e.  RR+ ) )  /\  m  e.  NN0 )  /\  m  =  ( y  +  1 ) )  -> 
( m  =  1  ->  ( I `  m )  e.  RR+ ) )
4624simp3i 968 . . . . . . . . . . . . . . 15  |-  ( m  e.  ( ZZ>= `  2
)  ->  ( I `  m )  =  ( ( ( m  - 
1 )  /  m
)  x.  ( I `
 ( m  - 
2 ) ) ) )
4746adantl 453 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
NN0  /\  A. m  e.  NN0  ( m  <_ 
y  ->  ( I `  m )  e.  RR+ ) )  /\  m  =  ( y  +  1 ) )  /\  m  e.  ( ZZ>= ` 
2 ) )  -> 
( I `  m
)  =  ( ( ( m  -  1 )  /  m )  x.  ( I `  ( m  -  2
) ) ) )
48 eluz2b2 10504 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  ( ZZ>= `  2
)  <->  ( m  e.  NN  /\  1  < 
m ) )
4948simplbi 447 . . . . . . . . . . . . . . . . . . 19  |-  ( m  e.  ( ZZ>= `  2
)  ->  m  e.  NN )
50 nnre 9963 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  NN  ->  m  e.  RR )
51 1re 9046 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  RR
5251a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  NN  ->  1  e.  RR )
5350, 52resubcld 9421 . . . . . . . . . . . . . . . . . . 19  |-  ( m  e.  NN  ->  (
m  -  1 )  e.  RR )
5449, 53syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  ( ZZ>= `  2
)  ->  ( m  -  1 )  e.  RR )
55 1m1e0 10024 . . . . . . . . . . . . . . . . . . 19  |-  ( 1  -  1 )  =  0
5651a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  ( ZZ>= `  2
)  ->  1  e.  RR )
57 eluzelre 10453 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  ( ZZ>= `  2
)  ->  m  e.  RR )
5848simprbi 451 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  ( ZZ>= `  2
)  ->  1  <  m )
5956, 57, 56, 58ltsub1dd 9594 . . . . . . . . . . . . . . . . . . 19  |-  ( m  e.  ( ZZ>= `  2
)  ->  ( 1  -  1 )  < 
( m  -  1 ) )
6055, 59syl5eqbrr 4206 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  ( ZZ>= `  2
)  ->  0  <  ( m  -  1 ) )
6154, 60elrpd 10602 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( ZZ>= `  2
)  ->  ( m  -  1 )  e.  RR+ )
6249nnrpd 10603 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( ZZ>= `  2
)  ->  m  e.  RR+ )
6361, 62rpdivcld 10621 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ( ZZ>= `  2
)  ->  ( (
m  -  1 )  /  m )  e.  RR+ )
6463adantl 453 . . . . . . . . . . . . . . 15  |-  ( ( ( ( y  e. 
NN0  /\  A. m  e.  NN0  ( m  <_ 
y  ->  ( I `  m )  e.  RR+ ) )  /\  m  =  ( y  +  1 ) )  /\  m  e.  ( ZZ>= ` 
2 ) )  -> 
( ( m  - 
1 )  /  m
)  e.  RR+ )
65 breq1 4175 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  =  k  ->  (
m  <_  y  <->  k  <_  y ) )
66 fveq2 5687 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  =  k  ->  (
I `  m )  =  ( I `  k ) )
6766eleq1d 2470 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  =  k  ->  (
( I `  m
)  e.  RR+  <->  ( I `  k )  e.  RR+ ) )
6865, 67imbi12d 312 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  =  k  ->  (
( m  <_  y  ->  ( I `  m
)  e.  RR+ )  <->  ( k  <_  y  ->  ( I `  k )  e.  RR+ ) ) )
6968cbvralv 2892 . . . . . . . . . . . . . . . . . . 19  |-  ( A. m  e.  NN0  ( m  <_  y  ->  (
I `  m )  e.  RR+ )  <->  A. k  e.  NN0  ( k  <_ 
y  ->  ( I `  k )  e.  RR+ ) )
7069biimpi 187 . . . . . . . . . . . . . . . . . 18  |-  ( A. m  e.  NN0  ( m  <_  y  ->  (
I `  m )  e.  RR+ )  ->  A. k  e.  NN0  ( k  <_ 
y  ->  ( I `  k )  e.  RR+ ) )
7170ad3antlr 712 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( y  e. 
NN0  /\  A. m  e.  NN0  ( m  <_ 
y  ->  ( I `  m )  e.  RR+ ) )  /\  m  =  ( y  +  1 ) )  /\  m  e.  ( ZZ>= ` 
2 ) )  ->  A. k  e.  NN0  ( k  <_  y  ->  ( I `  k
)  e.  RR+ )
)
72 uznn0sub 10473 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  ( ZZ>= `  2
)  ->  ( m  -  2 )  e. 
NN0 )
7372adantl 453 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( y  e. 
NN0  /\  A. m  e.  NN0  ( m  <_ 
y  ->  ( I `  m )  e.  RR+ ) )  /\  m  =  ( y  +  1 ) )  /\  m  e.  ( ZZ>= ` 
2 ) )  -> 
( m  -  2 )  e.  NN0 )
7471, 73jca 519 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( y  e. 
NN0  /\  A. m  e.  NN0  ( m  <_ 
y  ->  ( I `  m )  e.  RR+ ) )  /\  m  =  ( y  +  1 ) )  /\  m  e.  ( ZZ>= ` 
2 ) )  -> 
( A. k  e. 
NN0  ( k  <_ 
y  ->  ( I `  k )  e.  RR+ )  /\  ( m  - 
2 )  e.  NN0 ) )
75 simplll 735 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( y  e. 
NN0  /\  A. m  e.  NN0  ( m  <_ 
y  ->  ( I `  m )  e.  RR+ ) )  /\  m  =  ( y  +  1 ) )  /\  m  e.  ( ZZ>= ` 
2 ) )  -> 
y  e.  NN0 )
76 simplr 732 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( y  e. 
NN0  /\  A. m  e.  NN0  ( m  <_ 
y  ->  ( I `  m )  e.  RR+ ) )  /\  m  =  ( y  +  1 ) )  /\  m  e.  ( ZZ>= ` 
2 ) )  ->  m  =  ( y  +  1 ) )
77 simpr 448 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( y  e. 
NN0  /\  A. m  e.  NN0  ( m  <_ 
y  ->  ( I `  m )  e.  RR+ ) )  /\  m  =  ( y  +  1 ) )  /\  m  e.  ( ZZ>= ` 
2 ) )  ->  m  e.  ( ZZ>= ` 
2 ) )
78 simp2 958 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  NN0  /\  m  =  ( y  +  1 )  /\  m  e.  ( ZZ>= ` 
2 ) )  ->  m  =  ( y  +  1 ) )
7978oveq1d 6055 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  NN0  /\  m  =  ( y  +  1 )  /\  m  e.  ( ZZ>= ` 
2 ) )  -> 
( m  -  2 )  =  ( ( y  +  1 )  -  2 ) )
80 nn0re 10186 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  NN0  ->  y  e.  RR )
81803ad2ant1 978 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  NN0  /\  m  =  ( y  +  1 )  /\  m  e.  ( ZZ>= ` 
2 ) )  -> 
y  e.  RR )
8281recnd 9070 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  NN0  /\  m  =  ( y  +  1 )  /\  m  e.  ( ZZ>= ` 
2 ) )  -> 
y  e.  CC )
83 df-2 10014 . . . . . . . . . . . . . . . . . . . . . . 23  |-  2  =  ( 1  +  1 )
8483a1i 11 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  CC  ->  2  =  ( 1  +  1 ) )
8584oveq2d 6056 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  CC  ->  (
( y  +  1 )  -  2 )  =  ( ( y  +  1 )  -  ( 1  +  1 ) ) )
86 id 20 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  CC  ->  y  e.  CC )
87 ax-1cn 9004 . . . . . . . . . . . . . . . . . . . . . . 23  |-  1  e.  CC
8887a1i 11 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  CC  ->  1  e.  CC )
8986, 88, 88pnpcan2d 9405 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  CC  ->  (
( y  +  1 )  -  ( 1  +  1 ) )  =  ( y  - 
1 ) )
9085, 89eqtrd 2436 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  CC  ->  (
( y  +  1 )  -  2 )  =  ( y  - 
1 ) )
9182, 90syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  NN0  /\  m  =  ( y  +  1 )  /\  m  e.  ( ZZ>= ` 
2 ) )  -> 
( ( y  +  1 )  -  2 )  =  ( y  -  1 ) )
9279, 91eqtrd 2436 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  NN0  /\  m  =  ( y  +  1 )  /\  m  e.  ( ZZ>= ` 
2 ) )  -> 
( m  -  2 )  =  ( y  -  1 ) )
9381lem1d 9900 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  NN0  /\  m  =  ( y  +  1 )  /\  m  e.  ( ZZ>= ` 
2 ) )  -> 
( y  -  1 )  <_  y )
9492, 93eqbrtrd 4192 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  NN0  /\  m  =  ( y  +  1 )  /\  m  e.  ( ZZ>= ` 
2 ) )  -> 
( m  -  2 )  <_  y )
9575, 76, 77, 94syl3anc 1184 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( y  e. 
NN0  /\  A. m  e.  NN0  ( m  <_ 
y  ->  ( I `  m )  e.  RR+ ) )  /\  m  =  ( y  +  1 ) )  /\  m  e.  ( ZZ>= ` 
2 ) )  -> 
( m  -  2 )  <_  y )
96 breq1 4175 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  ( m  - 
2 )  ->  (
k  <_  y  <->  ( m  -  2 )  <_ 
y ) )
97 fveq2 5687 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  ( m  - 
2 )  ->  (
I `  k )  =  ( I `  ( m  -  2
) ) )
9897eleq1d 2470 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  ( m  - 
2 )  ->  (
( I `  k
)  e.  RR+  <->  ( I `  ( m  -  2 ) )  e.  RR+ ) )
9996, 98imbi12d 312 . . . . . . . . . . . . . . . . 17  |-  ( k  =  ( m  - 
2 )  ->  (
( k  <_  y  ->  ( I `  k
)  e.  RR+ )  <->  ( ( m  -  2 )  <_  y  ->  ( I `  ( m  -  2 ) )  e.  RR+ ) ) )
10099rspccva 3011 . . . . . . . . . . . . . . . 16  |-  ( ( A. k  e.  NN0  ( k  <_  y  ->  ( I `  k
)  e.  RR+ )  /\  ( m  -  2 )  e.  NN0 )  ->  ( ( m  - 
2 )  <_  y  ->  ( I `  (
m  -  2 ) )  e.  RR+ )
)
10174, 95, 100sylc 58 . . . . . . . . . . . . . . 15  |-  ( ( ( ( y  e. 
NN0  /\  A. m  e.  NN0  ( m  <_ 
y  ->  ( I `  m )  e.  RR+ ) )  /\  m  =  ( y  +  1 ) )  /\  m  e.  ( ZZ>= ` 
2 ) )  -> 
( I `  (
m  -  2 ) )  e.  RR+ )
10264, 101rpmulcld 10620 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
NN0  /\  A. m  e.  NN0  ( m  <_ 
y  ->  ( I `  m )  e.  RR+ ) )  /\  m  =  ( y  +  1 ) )  /\  m  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( m  -  1 )  /  m )  x.  (
I `  ( m  -  2 ) ) )  e.  RR+ )
10347, 102eqeltrd 2478 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
NN0  /\  A. m  e.  NN0  ( m  <_ 
y  ->  ( I `  m )  e.  RR+ ) )  /\  m  =  ( y  +  1 ) )  /\  m  e.  ( ZZ>= ` 
2 ) )  -> 
( I `  m
)  e.  RR+ )
104103adantllr 700 . . . . . . . . . . . 12  |-  ( ( ( ( ( y  e.  NN0  /\  A. m  e.  NN0  ( m  <_ 
y  ->  ( I `  m )  e.  RR+ ) )  /\  m  e.  NN0 )  /\  m  =  ( y  +  1 ) )  /\  m  e.  ( ZZ>= ` 
2 ) )  -> 
( I `  m
)  e.  RR+ )
105104ex 424 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
NN0  /\  A. m  e.  NN0  ( m  <_ 
y  ->  ( I `  m )  e.  RR+ ) )  /\  m  e.  NN0 )  /\  m  =  ( y  +  1 ) )  -> 
( m  e.  (
ZZ>= `  2 )  -> 
( I `  m
)  e.  RR+ )
)
106 simplll 735 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
NN0  /\  A. m  e.  NN0  ( m  <_ 
y  ->  ( I `  m )  e.  RR+ ) )  /\  m  e.  NN0 )  /\  m  =  ( y  +  1 ) )  -> 
y  e.  NN0 )
107 simplr 732 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
NN0  /\  A. m  e.  NN0  ( m  <_ 
y  ->  ( I `  m )  e.  RR+ ) )  /\  m  e.  NN0 )  /\  m  =  ( y  +  1 ) )  ->  m  e.  NN0 )
108 simpr 448 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
NN0  /\  A. m  e.  NN0  ( m  <_ 
y  ->  ( I `  m )  e.  RR+ ) )  /\  m  e.  NN0 )  /\  m  =  ( y  +  1 ) )  ->  m  =  ( y  +  1 ) )
109 simp3 959 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  NN0  /\  m  e.  NN0  /\  m  =  ( y  +  1 ) )  ->  m  =  ( y  +  1 ) )
110 nn0p1nn 10215 . . . . . . . . . . . . . . . 16  |-  ( y  e.  NN0  ->  ( y  +  1 )  e.  NN )
1111103ad2ant1 978 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  NN0  /\  m  e.  NN0  /\  m  =  ( y  +  1 ) )  -> 
( y  +  1 )  e.  NN )
112109, 111eqeltrd 2478 . . . . . . . . . . . . . 14  |-  ( ( y  e.  NN0  /\  m  e.  NN0  /\  m  =  ( y  +  1 ) )  ->  m  e.  NN )
113 elnnuz 10478 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  <->  m  e.  ( ZZ>= `  1 )
)
114112, 113sylib 189 . . . . . . . . . . . . 13  |-  ( ( y  e.  NN0  /\  m  e.  NN0  /\  m  =  ( y  +  1 ) )  ->  m  e.  ( ZZ>= ` 
1 ) )
115 uzp1 10475 . . . . . . . . . . . . . 14  |-  ( m  e.  ( ZZ>= `  1
)  ->  ( m  =  1  \/  m  e.  ( ZZ>= `  ( 1  +  1 ) ) ) )
116 1p1e2 10050 . . . . . . . . . . . . . . . . 17  |-  ( 1  +  1 )  =  2
117116fveq2i 5690 . . . . . . . . . . . . . . . 16  |-  ( ZZ>= `  ( 1  +  1 ) )  =  (
ZZ>= `  2 )
118117eleq2i 2468 . . . . . . . . . . . . . . 15  |-  ( m  e.  ( ZZ>= `  (
1  +  1 ) )  <->  m  e.  ( ZZ>=
`  2 ) )
119118orbi2i 506 . . . . . . . . . . . . . 14  |-  ( ( m  =  1  \/  m  e.  ( ZZ>= `  ( 1  +  1 ) ) )  <->  ( m  =  1  \/  m  e.  ( ZZ>= `  2 )
) )
120115, 119sylib 189 . . . . . . . . . . . . 13  |-  ( m  e.  ( ZZ>= `  1
)  ->  ( m  =  1  \/  m  e.  ( ZZ>= `  2 )
) )
121114, 120syl 16 . . . . . . . . . . . 12  |-  ( ( y  e.  NN0  /\  m  e.  NN0  /\  m  =  ( y  +  1 ) )  -> 
( m  =  1  \/  m  e.  (
ZZ>= `  2 ) ) )
122106, 107, 108, 121syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
NN0  /\  A. m  e.  NN0  ( m  <_ 
y  ->  ( I `  m )  e.  RR+ ) )  /\  m  e.  NN0 )  /\  m  =  ( y  +  1 ) )  -> 
( m  =  1  \/  m  e.  (
ZZ>= `  2 ) ) )
12345, 105, 122mpjaod 371 . . . . . . . . . 10  |-  ( ( ( ( y  e. 
NN0  /\  A. m  e.  NN0  ( m  <_ 
y  ->  ( I `  m )  e.  RR+ ) )  /\  m  e.  NN0 )  /\  m  =  ( y  +  1 ) )  -> 
( I `  m
)  e.  RR+ )
124123adantlr 696 . . . . . . . . 9  |-  ( ( ( ( ( y  e.  NN0  /\  A. m  e.  NN0  ( m  <_ 
y  ->  ( I `  m )  e.  RR+ ) )  /\  m  e.  NN0 )  /\  m  <_  ( y  +  1 ) )  /\  m  =  ( y  +  1 ) )  -> 
( I `  m
)  e.  RR+ )
125124ex 424 . . . . . . . 8  |-  ( ( ( ( y  e. 
NN0  /\  A. m  e.  NN0  ( m  <_ 
y  ->  ( I `  m )  e.  RR+ ) )  /\  m  e.  NN0 )  /\  m  <_  ( y  +  1 ) )  ->  (
m  =  ( y  +  1 )  -> 
( I `  m
)  e.  RR+ )
)
126 simplll 735 . . . . . . . . 9  |-  ( ( ( ( y  e. 
NN0  /\  A. m  e.  NN0  ( m  <_ 
y  ->  ( I `  m )  e.  RR+ ) )  /\  m  e.  NN0 )  /\  m  <_  ( y  +  1 ) )  ->  y  e.  NN0 )
127 simpr 448 . . . . . . . . 9  |-  ( ( ( ( y  e. 
NN0  /\  A. m  e.  NN0  ( m  <_ 
y  ->  ( I `  m )  e.  RR+ ) )  /\  m  e.  NN0 )  /\  m  <_  ( y  +  1 ) )  ->  m  <_  ( y  +  1 ) )
128 simpl1 960 . . . . . . . . . . 11  |-  ( ( ( y  e.  NN0  /\  m  e.  NN0  /\  m  <_  ( y  +  1 ) )  /\  m  <  ( y  +  1 ) )  -> 
y  e.  NN0 )
129 simpl2 961 . . . . . . . . . . 11  |-  ( ( ( y  e.  NN0  /\  m  e.  NN0  /\  m  <_  ( y  +  1 ) )  /\  m  <  ( y  +  1 ) )  ->  m  e.  NN0 )
130 simpr 448 . . . . . . . . . . 11  |-  ( ( ( y  e.  NN0  /\  m  e.  NN0  /\  m  <_  ( y  +  1 ) )  /\  m  <  ( y  +  1 ) )  ->  m  <  ( y  +  1 ) )
131 simpr 448 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  NN0  /\  m  =  0 )  ->  m  =  0 )
132 nn0ge0 10203 . . . . . . . . . . . . . . . 16  |-  ( y  e.  NN0  ->  0  <_ 
y )
133132adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  NN0  /\  m  =  0 )  ->  0  <_  y
)
134131, 133eqbrtrd 4192 . . . . . . . . . . . . . 14  |-  ( ( y  e.  NN0  /\  m  =  0 )  ->  m  <_  y
)
1351343ad2antl1 1119 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  NN0  /\  m  e.  NN0  /\  m  <  ( y  +  1 ) )  /\  m  =  0 )  ->  m  <_  y
)
136 simpl1 960 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  NN0  /\  m  e.  NN0  /\  m  <  ( y  +  1 ) )  /\  m  e.  NN )  ->  y  e.  NN0 )
137 simpr 448 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  NN0  /\  m  e.  NN0  /\  m  <  ( y  +  1 ) )  /\  m  e.  NN )  ->  m  e.  NN )
138 simpl3 962 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  NN0  /\  m  e.  NN0  /\  m  <  ( y  +  1 ) )  /\  m  e.  NN )  ->  m  <  ( y  +  1 ) )
139 simp3 959 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  NN0  /\  m  e.  NN  /\  m  <  ( y  +  1 ) )  ->  m  <  ( y  +  1 ) )
140 simp2 958 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  NN0  /\  m  e.  NN  /\  m  <  ( y  +  1 ) )  ->  m  e.  NN )
141 simp1 957 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  NN0  /\  m  e.  NN  /\  m  <  ( y  +  1 ) )  ->  y  e.  NN0 )
14218a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  NN0  /\  m  e.  NN  /\  m  <  ( y  +  1 ) )  ->  0  e.  RR )
143533ad2ant2 979 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  NN0  /\  m  e.  NN  /\  m  <  ( y  +  1 ) )  ->  (
m  -  1 )  e.  RR )
144803ad2ant1 978 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  NN0  /\  m  e.  NN  /\  m  <  ( y  +  1 ) )  ->  y  e.  RR )
145 nnm1nn0 10217 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  e.  NN  ->  (
m  -  1 )  e.  NN0 )
146145nn0ge0d 10233 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  NN  ->  0  <_  ( m  -  1 ) )
1471463ad2ant2 979 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  NN0  /\  m  e.  NN  /\  m  <  ( y  +  1 ) )  ->  0  <_  ( m  -  1 ) )
148503ad2ant2 979 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  NN0  /\  m  e.  NN  /\  m  <  ( y  +  1 ) )  ->  m  e.  RR )
14951a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  NN0  /\  m  e.  NN  /\  m  <  ( y  +  1 ) )  ->  1  e.  RR )
150148, 149, 144ltsubaddd 9578 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  NN0  /\  m  e.  NN  /\  m  <  ( y  +  1 ) )  ->  (
( m  -  1 )  <  y  <->  m  <  ( y  +  1 ) ) )
151139, 150mpbird 224 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  NN0  /\  m  e.  NN  /\  m  <  ( y  +  1 ) )  ->  (
m  -  1 )  <  y )
152142, 143, 144, 147, 151lelttrd 9184 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  NN0  /\  m  e.  NN  /\  m  <  ( y  +  1 ) )  ->  0  <  y )
153152gt0ne0d 9547 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  NN0  /\  m  e.  NN  /\  m  <  ( y  +  1 ) )  ->  y  =/=  0 )
154 elnnne0 10191 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  NN  <->  ( y  e.  NN0  /\  y  =/=  0 ) )
155141, 153, 154sylanbrc 646 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  NN0  /\  m  e.  NN  /\  m  <  ( y  +  1 ) )  ->  y  e.  NN )
156 nnleltp1 10285 . . . . . . . . . . . . . . . 16  |-  ( ( m  e.  NN  /\  y  e.  NN )  ->  ( m  <_  y  <->  m  <  ( y  +  1 ) ) )
157140, 155, 156syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  NN0  /\  m  e.  NN  /\  m  <  ( y  +  1 ) )  ->  (
m  <_  y  <->  m  <  ( y  +  1 ) ) )
158139, 157mpbird 224 . . . . . . . . . . . . . 14  |-  ( ( y  e.  NN0  /\  m  e.  NN  /\  m  <  ( y  +  1 ) )  ->  m  <_  y )
159136, 137, 138, 158syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  NN0  /\  m  e.  NN0  /\  m  <  ( y  +  1 ) )  /\  m  e.  NN )  ->  m  <_  y )
160 elnn0 10179 . . . . . . . . . . . . . . . 16  |-  ( m  e.  NN0  <->  ( m  e.  NN  \/  m  =  0 ) )
161160biimpi 187 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN0  ->  ( m  e.  NN  \/  m  =  0 ) )
162161orcomd 378 . . . . . . . . . . . . . 14  |-  ( m  e.  NN0  ->  ( m  =  0  \/  m  e.  NN ) )
1631623ad2ant2 979 . . . . . . . . . . . . 13  |-  ( ( y  e.  NN0  /\  m  e.  NN0  /\  m  <  ( y  +  1 ) )  ->  (
m  =  0  \/  m  e.  NN ) )
164135, 159, 163mpjaodan 762 . . . . . . . . . . . 12  |-  ( ( y  e.  NN0  /\  m  e.  NN0  /\  m  <  ( y  +  1 ) )  ->  m  <_  y )
165164orcd 382 . . . . . . . . . . 11  |-  ( ( y  e.  NN0  /\  m  e.  NN0  /\  m  <  ( y  +  1 ) )  ->  (
m  <_  y  \/  m  =  ( y  +  1 ) ) )
166128, 129, 130, 165syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( y  e.  NN0  /\  m  e.  NN0  /\  m  <_  ( y  +  1 ) )  /\  m  <  ( y  +  1 ) )  -> 
( m  <_  y  \/  m  =  (
y  +  1 ) ) )
167 simpr 448 . . . . . . . . . . 11  |-  ( ( ( y  e.  NN0  /\  m  e.  NN0  /\  m  <_  ( y  +  1 ) )  /\  m  =  ( y  +  1 ) )  ->  m  =  ( y  +  1 ) )
168167olcd 383 . . . . . . . . . 10  |-  ( ( ( y  e.  NN0  /\  m  e.  NN0  /\  m  <_  ( y  +  1 ) )  /\  m  =  ( y  +  1 ) )  ->  ( m  <_ 
y  \/  m  =  ( y  +  1 ) ) )
169 simp3 959 . . . . . . . . . . 11  |-  ( ( y  e.  NN0  /\  m  e.  NN0  /\  m  <_  ( y  +  1 ) )  ->  m  <_  ( y  +  1 ) )
170163ad2ant2 979 . . . . . . . . . . . 12  |-  ( ( y  e.  NN0  /\  m  e.  NN0  /\  m  <_  ( y  +  1 ) )  ->  m  e.  RR )
171803ad2ant1 978 . . . . . . . . . . . . 13  |-  ( ( y  e.  NN0  /\  m  e.  NN0  /\  m  <_  ( y  +  1 ) )  ->  y  e.  RR )
17251a1i 11 . . . . . . . . . . . . 13  |-  ( ( y  e.  NN0  /\  m  e.  NN0  /\  m  <_  ( y  +  1 ) )  ->  1  e.  RR )
173171, 172readdcld 9071 . . . . . . . . . . . 12  |-  ( ( y  e.  NN0  /\  m  e.  NN0  /\  m  <_  ( y  +  1 ) )  ->  (
y  +  1 )  e.  RR )
174170, 173leloed 9172 . . . . . . . . . . 11  |-  ( ( y  e.  NN0  /\  m  e.  NN0  /\  m  <_  ( y  +  1 ) )  ->  (
m  <_  ( y  +  1 )  <->  ( m  <  ( y  +  1 )  \/  m  =  ( y  +  1 ) ) ) )
175169, 174mpbid 202 . . . . . . . . . 10  |-  ( ( y  e.  NN0  /\  m  e.  NN0  /\  m  <_  ( y  +  1 ) )  ->  (
m  <  ( y  +  1 )  \/  m  =  ( y  +  1 ) ) )
176166, 168, 175mpjaodan 762 . . . . . . . . 9  |-  ( ( y  e.  NN0  /\  m  e.  NN0  /\  m  <_  ( y  +  1 ) )  ->  (
m  <_  y  \/  m  =  ( y  +  1 ) ) )
177126, 37, 127, 176syl3anc 1184 . . . . . . . 8  |-  ( ( ( ( y  e. 
NN0  /\  A. m  e.  NN0  ( m  <_ 
y  ->  ( I `  m )  e.  RR+ ) )  /\  m  e.  NN0 )  /\  m  <_  ( y  +  1 ) )  ->  (
m  <_  y  \/  m  =  ( y  +  1 ) ) )
17839, 125, 177mpjaod 371 . . . . . . 7  |-  ( ( ( ( y  e. 
NN0  /\  A. m  e.  NN0  ( m  <_ 
y  ->  ( I `  m )  e.  RR+ ) )  /\  m  e.  NN0 )  /\  m  <_  ( y  +  1 ) )  ->  (
I `  m )  e.  RR+ )
179178exp31 588 . . . . . 6  |-  ( ( y  e.  NN0  /\  A. m  e.  NN0  (
m  <_  y  ->  ( I `  m )  e.  RR+ ) )  -> 
( m  e.  NN0  ->  ( m  <_  (
y  +  1 )  ->  ( I `  m )  e.  RR+ ) ) )
18035, 179ralrimi 2747 . . . . 5  |-  ( ( y  e.  NN0  /\  A. m  e.  NN0  (
m  <_  y  ->  ( I `  m )  e.  RR+ ) )  ->  A. m  e.  NN0  ( m  <_  ( y  +  1 )  -> 
( I `  m
)  e.  RR+ )
)
181180ex 424 . . . 4  |-  ( y  e.  NN0  ->  ( A. m  e.  NN0  ( m  <_  y  ->  (
I `  m )  e.  RR+ )  ->  A. m  e.  NN0  ( m  <_ 
( y  +  1 )  ->  ( I `  m )  e.  RR+ ) ) )
1823, 6, 9, 12, 32, 181nn0ind 10322 . . 3  |-  ( N  e.  NN0  ->  A. m  e.  NN0  ( m  <_  N  ->  ( I `  m )  e.  RR+ ) )
183182ancri 536 . 2  |-  ( N  e.  NN0  ->  ( A. m  e.  NN0  ( m  <_  N  ->  (
I `  m )  e.  RR+ )  /\  N  e.  NN0 ) )
184 nn0re 10186 . . 3  |-  ( N  e.  NN0  ->  N  e.  RR )
185184leidd 9549 . 2  |-  ( N  e.  NN0  ->  N  <_  N )
186 breq1 4175 . . . 4  |-  ( m  =  N  ->  (
m  <_  N  <->  N  <_  N ) )
187 fveq2 5687 . . . . 5  |-  ( m  =  N  ->  (
I `  m )  =  ( I `  N ) )
188187eleq1d 2470 . . . 4  |-  ( m  =  N  ->  (
( I `  m
)  e.  RR+  <->  ( I `  N )  e.  RR+ ) )
189186, 188imbi12d 312 . . 3  |-  ( m  =  N  ->  (
( m  <_  N  ->  ( I `  m
)  e.  RR+ )  <->  ( N  <_  N  ->  ( I `  N )  e.  RR+ ) ) )
190189rspccva 3011 . 2  |-  ( ( A. m  e.  NN0  ( m  <_  N  -> 
( I `  m
)  e.  RR+ )  /\  N  e.  NN0 )  ->  ( N  <_  N  ->  ( I `  N )  e.  RR+ ) )
191183, 185, 190sylc 58 1  |-  ( N  e.  NN0  ->  ( I `
 N )  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   class class class wbr 4172    e. cmpt 4226   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    < clt 9076    <_ cle 9077    - cmin 9247    / cdiv 9633   NNcn 9956   2c2 10005   NN0cn0 10177   ZZ>=cuz 10444   RR+crp 10568   (,)cioo 10872   ^cexp 11337   sincsin 12621   picpi 12624   S.citg 19463
This theorem is referenced by:  wallispilem4  27684  wallispilem5  27685
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cc 8271  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-disj 4143  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-ofr 6265  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-omul 6688  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-acn 7785  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-ef 12625  df-sin 12627  df-cos 12628  df-pi 12630  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-cmp 17404  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-ovol 19314  df-vol 19315  df-mbf 19465  df-itg1 19466  df-itg2 19467  df-ibl 19468  df-itg 19469  df-0p 19515  df-limc 19706  df-dv 19707
  Copyright terms: Public domain W3C validator