HomeHome Metamath Proof Explorer < Previous   Next >
Related theorems
Unicode version

Theorem wefrc 3944
Description: A non-empty (possibly proper) subclass of a class well-ordered by  _E has a minimal element. Special case of Proposition 6.26 of [TakeutiZaring] p. 31. (Contributed by NM, 17-Feb-2004.)
Assertion
Ref Expression
wefrc  |-  ( (  _E  We  A  /\  B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  ( B  i^i  x )  =  (/) )
Distinct variable group:    x, B
Allowed substitution hint:    A( x)

Proof of Theorem wefrc
StepHypRef Expression
1 wess 3937 . . 3  |-  ( B 
C_  A  ->  (  _E  We  A  ->  _E  We  B ) )
2 n0 3082 . . . 4  |-  ( B  =/=  (/)  <->  E. y  y  e.  B )
3 ineq2 2985 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( B  i^i  x )  =  ( B  i^i  y
) )
43eqeq1d 2073 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( B  i^i  x
)  =  (/)  <->  ( B  i^i  y )  =  (/) ) )
54rcla4ev 2562 . . . . . . . . 9  |-  ( ( y  e.  B  /\  ( B  i^i  y
)  =  (/) )  ->  E. x  e.  B  ( B  i^i  x
)  =  (/) )
65ex 420 . . . . . . . 8  |-  ( y  e.  B  ->  (
( B  i^i  y
)  =  (/)  ->  E. x  e.  B  ( B  i^i  x )  =  (/) ) )
76adantl 446 . . . . . . 7  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( ( B  i^i  y )  =  (/)  ->  E. x  e.  B  ( B  i^i  x
)  =  (/) ) )
8 inss1 3009 . . . . . . . . . . 11  |-  ( B  i^i  y )  C_  B
9 wefr 3940 . . . . . . . . . . . . 13  |-  (  _E  We  B  ->  _E  Fr  B )
10 vex 2479 . . . . . . . . . . . . . . 15  |-  y  e. 
_V
1110inex2 3722 . . . . . . . . . . . . . 14  |-  ( B  i^i  y )  e. 
_V
1211epfrc 3936 . . . . . . . . . . . . 13  |-  ( (  _E  Fr  B  /\  ( B  i^i  y
)  C_  B  /\  ( B  i^i  y
)  =/=  (/) )  ->  E. x  e.  ( B  i^i  y ) ( ( B  i^i  y
)  i^i  x )  =  (/) )
139, 12syl3an1 1173 . . . . . . . . . . . 12  |-  ( (  _E  We  B  /\  ( B  i^i  y
)  C_  B  /\  ( B  i^i  y
)  =/=  (/) )  ->  E. x  e.  ( B  i^i  y ) ( ( B  i^i  y
)  i^i  x )  =  (/) )
14133exp 1109 . . . . . . . . . . 11  |-  (  _E  We  B  ->  (
( B  i^i  y
)  C_  B  ->  ( ( B  i^i  y
)  =/=  (/)  ->  E. x  e.  ( B  i^i  y
) ( ( B  i^i  y )  i^i  x )  =  (/) ) ) )
158, 14mpi 16 . . . . . . . . . 10  |-  (  _E  We  B  ->  (
( B  i^i  y
)  =/=  (/)  ->  E. x  e.  ( B  i^i  y
) ( ( B  i^i  y )  i^i  x )  =  (/) ) )
16 elin 2979 . . . . . . . . . . . . 13  |-  ( x  e.  ( B  i^i  y )  <->  ( x  e.  B  /\  x  e.  y ) )
1716anbi1i 669 . . . . . . . . . . . 12  |-  ( ( x  e.  ( B  i^i  y )  /\  ( ( B  i^i  y )  i^i  x
)  =  (/) )  <->  ( (
x  e.  B  /\  x  e.  y )  /\  ( ( B  i^i  y )  i^i  x
)  =  (/) ) )
18 anass 623 . . . . . . . . . . . 12  |-  ( ( ( x  e.  B  /\  x  e.  y
)  /\  ( ( B  i^i  y )  i^i  x )  =  (/) ) 
<->  ( x  e.  B  /\  ( x  e.  y  /\  ( ( B  i^i  y )  i^i  x )  =  (/) ) ) )
1917, 18bitri 238 . . . . . . . . . . 11  |-  ( ( x  e.  ( B  i^i  y )  /\  ( ( B  i^i  y )  i^i  x
)  =  (/) )  <->  ( x  e.  B  /\  (
x  e.  y  /\  ( ( B  i^i  y )  i^i  x
)  =  (/) ) ) )
2019rexbii2 2302 . . . . . . . . . 10  |-  ( E. x  e.  ( B  i^i  y ) ( ( B  i^i  y
)  i^i  x )  =  (/)  <->  E. x  e.  B  ( x  e.  y  /\  ( ( B  i^i  y )  i^i  x
)  =  (/) ) )
2115, 20syl6ib 215 . . . . . . . . 9  |-  (  _E  We  B  ->  (
( B  i^i  y
)  =/=  (/)  ->  E. x  e.  B  ( x  e.  y  /\  (
( B  i^i  y
)  i^i  x )  =  (/) ) ) )
2221adantr 445 . . . . . . . 8  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( ( B  i^i  y )  =/=  (/)  ->  E. x  e.  B  ( x  e.  y  /\  (
( B  i^i  y
)  i^i  x )  =  (/) ) ) )
23 elin 2979 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ( B  i^i  x )  <->  ( z  e.  B  /\  z  e.  x ) )
24 df-3an 898 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  e.  B  /\  z  e.  B  /\  x  e.  B )  <->  ( ( y  e.  B  /\  z  e.  B
)  /\  x  e.  B ) )
25 3anrot 901 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  e.  B  /\  z  e.  B  /\  x  e.  B )  <->  ( z  e.  B  /\  x  e.  B  /\  y  e.  B )
)
2624, 25bitr3i 240 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( y  e.  B  /\  z  e.  B
)  /\  x  e.  B )  <->  ( z  e.  B  /\  x  e.  B  /\  y  e.  B ) )
27 wetrep 3943 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (  _E  We  B  /\  ( z  e.  B  /\  x  e.  B  /\  y  e.  B
) )  ->  (
( z  e.  x  /\  x  e.  y
)  ->  z  e.  y ) )
2827exp3a 422 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (  _E  We  B  /\  ( z  e.  B  /\  x  e.  B  /\  y  e.  B
) )  ->  (
z  e.  x  -> 
( x  e.  y  ->  z  e.  y ) ) )
2926, 28sylan2b 455 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (  _E  We  B  /\  ( ( y  e.  B  /\  z  e.  B )  /\  x  e.  B ) )  -> 
( z  e.  x  ->  ( x  e.  y  ->  z  e.  y ) ) )
3029exp44 590 . . . . . . . . . . . . . . . . . . . 20  |-  (  _E  We  B  ->  (
y  e.  B  -> 
( z  e.  B  ->  ( x  e.  B  ->  ( z  e.  x  ->  ( x  e.  y  ->  z  e.  y ) ) ) ) ) )
3130imp 415 . . . . . . . . . . . . . . . . . . 19  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( z  e.  B  ->  ( x  e.  B  ->  ( z  e.  x  ->  ( x  e.  y  ->  z  e.  y ) ) ) ) )
3231com34 77 . . . . . . . . . . . . . . . . . 18  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( z  e.  B  ->  ( z  e.  x  ->  ( x  e.  B  ->  ( x  e.  y  ->  z  e.  y ) ) ) ) )
3332imp3a 417 . . . . . . . . . . . . . . . . 17  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( ( z  e.  B  /\  z  e.  x )  ->  (
x  e.  B  -> 
( x  e.  y  ->  z  e.  y ) ) ) )
3423, 33syl5bi 206 . . . . . . . . . . . . . . . 16  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( z  e.  ( B  i^i  x )  ->  ( x  e.  B  ->  ( x  e.  y  ->  z  e.  y ) ) ) )
3534imp4a 566 . . . . . . . . . . . . . . 15  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( z  e.  ( B  i^i  x )  ->  ( ( x  e.  B  /\  x  e.  y )  ->  z  e.  y ) ) )
3635com23 72 . . . . . . . . . . . . . 14  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( ( x  e.  B  /\  x  e.  y )  ->  (
z  e.  ( B  i^i  x )  -> 
z  e.  y ) ) )
3736ralrimdv 2355 . . . . . . . . . . . . 13  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( ( x  e.  B  /\  x  e.  y )  ->  A. z  e.  ( B  i^i  x
) z  e.  y ) )
38 dfss3 2809 . . . . . . . . . . . . 13  |-  ( ( B  i^i  x ) 
C_  y  <->  A. z  e.  ( B  i^i  x
) z  e.  y )
3937, 38syl6ibr 216 . . . . . . . . . . . 12  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( ( x  e.  B  /\  x  e.  y )  ->  ( B  i^i  x )  C_  y ) )
40 dfss 2806 . . . . . . . . . . . . . . . 16  |-  ( ( B  i^i  x ) 
C_  y  <->  ( B  i^i  x )  =  ( ( B  i^i  x
)  i^i  y )
)
41 in32 3001 . . . . . . . . . . . . . . . . 17  |-  ( ( B  i^i  x )  i^i  y )  =  ( ( B  i^i  y )  i^i  x
)
4241eqeq2i 2075 . . . . . . . . . . . . . . . 16  |-  ( ( B  i^i  x )  =  ( ( B  i^i  x )  i^i  y )  <->  ( B  i^i  x )  =  ( ( B  i^i  y
)  i^i  x )
)
4340, 42bitri 238 . . . . . . . . . . . . . . 15  |-  ( ( B  i^i  x ) 
C_  y  <->  ( B  i^i  x )  =  ( ( B  i^i  y
)  i^i  x )
)
4443biimpi 184 . . . . . . . . . . . . . 14  |-  ( ( B  i^i  x ) 
C_  y  ->  ( B  i^i  x )  =  ( ( B  i^i  y )  i^i  x
) )
4544eqeq1d 2073 . . . . . . . . . . . . 13  |-  ( ( B  i^i  x ) 
C_  y  ->  (
( B  i^i  x
)  =  (/)  <->  ( ( B  i^i  y )  i^i  x )  =  (/) ) )
4645biimprd 212 . . . . . . . . . . . 12  |-  ( ( B  i^i  x ) 
C_  y  ->  (
( ( B  i^i  y )  i^i  x
)  =  (/)  ->  ( B  i^i  x )  =  (/) ) )
4739, 46syl6 29 . . . . . . . . . . 11  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( ( x  e.  B  /\  x  e.  y )  ->  (
( ( B  i^i  y )  i^i  x
)  =  (/)  ->  ( B  i^i  x )  =  (/) ) ) )
4847exp3a 422 . . . . . . . . . 10  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( x  e.  B  ->  ( x  e.  y  ->  ( ( ( B  i^i  y )  i^i  x )  =  (/)  ->  ( B  i^i  x )  =  (/) ) ) ) )
4948imp4a 566 . . . . . . . . 9  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( x  e.  B  ->  ( ( x  e.  y  /\  ( ( B  i^i  y )  i^i  x )  =  (/) )  ->  ( B  i^i  x )  =  (/) ) ) )
5049reximdvai 2376 . . . . . . . 8  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( E. x  e.  B  ( x  e.  y  /\  ( ( B  i^i  y )  i^i  x )  =  (/) )  ->  E. x  e.  B  ( B  i^i  x )  =  (/) ) )
5122, 50syld 40 . . . . . . 7  |-  ( (  _E  We  B  /\  y  e.  B )  ->  ( ( B  i^i  y )  =/=  (/)  ->  E. x  e.  B  ( B  i^i  x )  =  (/) ) )
527, 51pm2.61dne 2257 . . . . . 6  |-  ( (  _E  We  B  /\  y  e.  B )  ->  E. x  e.  B  ( B  i^i  x
)  =  (/) )
5352ex 420 . . . . 5  |-  (  _E  We  B  ->  (
y  e.  B  ->  E. x  e.  B  ( B  i^i  x
)  =  (/) ) )
5453exlimdv 1782 . . . 4  |-  (  _E  We  B  ->  ( E. y  y  e.  B  ->  E. x  e.  B  ( B  i^i  x
)  =  (/) ) )
552, 54syl5bi 206 . . 3  |-  (  _E  We  B  ->  ( B  =/=  (/)  ->  E. x  e.  B  ( B  i^i  x )  =  (/) ) )
561, 55syl6com 31 . 2  |-  (  _E  We  A  ->  ( B  C_  A  ->  ( B  =/=  (/)  ->  E. x  e.  B  ( B  i^i  x )  =  (/) ) ) )
57563imp 1104 1  |-  ( (  _E  We  A  /\  B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  ( B  i^i  x )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 356    /\ w3a 896   E.wex 1446    = wceq 1520    e. wcel 1522    =/= wne 2183   A.wral 2275   E.wrex 2276    i^i cin 2793    C_ wss 2794   (/)c0 3073    _E cep 3860    Fr wfr 3906    We wwe 3908
This theorem is referenced by:  tz7.5  3970  onnseq  5822  finminlem  24022
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-5 1442  ax-6 1443  ax-7 1444  ax-gen 1445  ax-8 1524  ax-11 1525  ax-14 1527  ax-17 1529  ax-12o 1563  ax-10 1577  ax-9 1583  ax-4 1590  ax-16 1776  ax-ext 2047  ax-sep 3707  ax-nul 3715  ax-pr 3775
This theorem depends on definitions:  df-bi 175  df-or 357  df-an 358  df-3an 898  df-ex 1447  df-sb 1737  df-eu 1959  df-mo 1960  df-clab 2053  df-cleq 2058  df-clel 2061  df-ne 2185  df-ral 2279  df-rex 2280  df-rab 2282  df-v 2478  df-dif 2797  df-un 2799  df-in 2801  df-ss 2805  df-nul 3074  df-if 3183  df-sn 3262  df-pr 3263  df-op 3265  df-br 3593  df-opab 3647  df-eprel 3862  df-po 3871  df-so 3872  df-fr 3909  df-we 3911
Copyright terms: Public domain