MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wereu2 Unicode version

Theorem wereu2 4539
Description: All nonempty (possibly proper) subclasses of  A, which has a well-founded relation  R, have  R-minimal elements. Proposition 6.26 of [TakeutiZaring] p. 31. (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
wereu2  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  B  =/=  (/) ) )  ->  E! x  e.  B  A. y  e.  B  -.  y R x )
Distinct variable groups:    x, y, A    x, B, y    x, R, y

Proof of Theorem wereu2
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 3597 . . . 4  |-  ( B  =/=  (/)  <->  E. z  z  e.  B )
2 rabeq0 3609 . . . . . . . 8  |-  ( { w  e.  B  |  w R z }  =  (/)  <->  A. w  e.  B  -.  w R z )
3 breq1 4175 . . . . . . . . . . . . . 14  |-  ( y  =  w  ->  (
y R x  <->  w R x ) )
43notbid 286 . . . . . . . . . . . . 13  |-  ( y  =  w  ->  ( -.  y R x  <->  -.  w R x ) )
54cbvralv 2892 . . . . . . . . . . . 12  |-  ( A. y  e.  B  -.  y R x  <->  A. w  e.  B  -.  w R x )
6 breq2 4176 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  (
w R x  <->  w R
z ) )
76notbid 286 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  ( -.  w R x  <->  -.  w R z ) )
87ralbidv 2686 . . . . . . . . . . . 12  |-  ( x  =  z  ->  ( A. w  e.  B  -.  w R x  <->  A. w  e.  B  -.  w R z ) )
95, 8syl5bb 249 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( A. y  e.  B  -.  y R x  <->  A. w  e.  B  -.  w R z ) )
109rspcev 3012 . . . . . . . . . 10  |-  ( ( z  e.  B  /\  A. w  e.  B  -.  w R z )  ->  E. x  e.  B  A. y  e.  B  -.  y R x )
1110ex 424 . . . . . . . . 9  |-  ( z  e.  B  ->  ( A. w  e.  B  -.  w R z  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) )
1211ad2antll 710 . . . . . . . 8  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  ( A. w  e.  B  -.  w R z  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) )
132, 12syl5bi 209 . . . . . . 7  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  ( { w  e.  B  |  w R z }  =  (/)  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) )
14 simprl 733 . . . . . . . . . . 11  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  B  C_  A )
15 simplr 732 . . . . . . . . . . 11  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  R Se  A )
16 sess2 4511 . . . . . . . . . . 11  |-  ( B 
C_  A  ->  ( R Se  A  ->  R Se  B
) )
1714, 15, 16sylc 58 . . . . . . . . . 10  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  R Se  B )
18 simprr 734 . . . . . . . . . 10  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  z  e.  B )
19 seex 4505 . . . . . . . . . 10  |-  ( ( R Se  B  /\  z  e.  B )  ->  { w  e.  B  |  w R z }  e.  _V )
2017, 18, 19syl2anc 643 . . . . . . . . 9  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  { w  e.  B  |  w R z }  e.  _V )
21 wefr 4532 . . . . . . . . . 10  |-  ( R  We  A  ->  R  Fr  A )
2221ad2antrr 707 . . . . . . . . 9  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  R  Fr  A )
23 ssrab2 3388 . . . . . . . . . 10  |-  { w  e.  B  |  w R z }  C_  B
2423, 14syl5ss 3319 . . . . . . . . 9  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  { w  e.  B  |  w R z }  C_  A )
25 fri 4504 . . . . . . . . . 10  |-  ( ( ( { w  e.  B  |  w R z }  e.  _V  /\  R  Fr  A )  /\  ( { w  e.  B  |  w R z }  C_  A  /\  { w  e.  B  |  w R z }  =/=  (/) ) )  ->  E. x  e.  {
w  e.  B  |  w R z } A. y  e.  { w  e.  B  |  w R z }  -.  y R x )
2625expr 599 . . . . . . . . 9  |-  ( ( ( { w  e.  B  |  w R z }  e.  _V  /\  R  Fr  A )  /\  { w  e.  B  |  w R z }  C_  A
)  ->  ( {
w  e.  B  |  w R z }  =/=  (/) 
->  E. x  e.  {
w  e.  B  |  w R z } A. y  e.  { w  e.  B  |  w R z }  -.  y R x ) )
2720, 22, 24, 26syl21anc 1183 . . . . . . . 8  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  ( { w  e.  B  |  w R z }  =/=  (/)  ->  E. x  e.  { w  e.  B  |  w R z } A. y  e.  {
w  e.  B  |  w R z }  -.  y R x ) )
28 breq1 4175 . . . . . . . . . 10  |-  ( w  =  x  ->  (
w R z  <->  x R
z ) )
2928rexrab 3058 . . . . . . . . 9  |-  ( E. x  e.  { w  e.  B  |  w R z } A. y  e.  { w  e.  B  |  w R z }  -.  y R x  <->  E. x  e.  B  ( x R z  /\  A. y  e.  { w  e.  B  |  w R z }  -.  y R x ) )
30 breq1 4175 . . . . . . . . . . . . 13  |-  ( w  =  y  ->  (
w R z  <->  y R
z ) )
3130ralrab 3056 . . . . . . . . . . . 12  |-  ( A. y  e.  { w  e.  B  |  w R z }  -.  y R x  <->  A. y  e.  B  ( y R z  ->  -.  y R x ) )
32 weso 4533 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( R  We  A  ->  R  Or  A )
3332ad2antrr 707 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  R  Or  A )
34 soss 4481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( B 
C_  A  ->  ( R  Or  A  ->  R  Or  B ) )
3514, 33, 34sylc 58 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  R  Or  B )
3635ad2antrr 707 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B ) )  /\  x  e.  B )  /\  y  e.  B
)  ->  R  Or  B )
37 simpr 448 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B ) )  /\  x  e.  B )  /\  y  e.  B
)  ->  y  e.  B )
38 simplr 732 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B ) )  /\  x  e.  B )  /\  y  e.  B
)  ->  x  e.  B )
3918ad2antrr 707 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B ) )  /\  x  e.  B )  /\  y  e.  B
)  ->  z  e.  B )
40 sotr 4485 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  Or  B  /\  ( y  e.  B  /\  x  e.  B  /\  z  e.  B
) )  ->  (
( y R x  /\  x R z )  ->  y R
z ) )
4136, 37, 38, 39, 40syl13anc 1186 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B ) )  /\  x  e.  B )  /\  y  e.  B
)  ->  ( (
y R x  /\  x R z )  -> 
y R z ) )
4241ancomsd 441 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B ) )  /\  x  e.  B )  /\  y  e.  B
)  ->  ( (
x R z  /\  y R x )  -> 
y R z ) )
4342expdimp 427 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B ) )  /\  x  e.  B )  /\  y  e.  B
)  /\  x R
z )  ->  (
y R x  -> 
y R z ) )
4443an32s 780 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B ) )  /\  x  e.  B )  /\  x R z )  /\  y  e.  B
)  ->  ( y R x  ->  y R z ) )
4544con3d 127 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B ) )  /\  x  e.  B )  /\  x R z )  /\  y  e.  B
)  ->  ( -.  y R z  ->  -.  y R x ) )
46 idd 22 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B ) )  /\  x  e.  B )  /\  x R z )  /\  y  e.  B
)  ->  ( -.  y R x  ->  -.  y R x ) )
4745, 46jad 156 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B ) )  /\  x  e.  B )  /\  x R z )  /\  y  e.  B
)  ->  ( (
y R z  ->  -.  y R x )  ->  -.  y R x ) )
4847ralimdva 2744 . . . . . . . . . . . 12  |-  ( ( ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B ) )  /\  x  e.  B )  /\  x R z )  ->  ( A. y  e.  B  ( y R z  ->  -.  y R x )  ->  A. y  e.  B  -.  y R x ) )
4931, 48syl5bi 209 . . . . . . . . . . 11  |-  ( ( ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B ) )  /\  x  e.  B )  /\  x R z )  ->  ( A. y  e.  { w  e.  B  |  w R z }  -.  y R x  ->  A. y  e.  B  -.  y R x ) )
5049expimpd 587 . . . . . . . . . 10  |-  ( ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  /\  x  e.  B )  ->  (
( x R z  /\  A. y  e. 
{ w  e.  B  |  w R z }  -.  y R x )  ->  A. y  e.  B  -.  y R x ) )
5150reximdva 2778 . . . . . . . . 9  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  ( E. x  e.  B  ( x R z  /\  A. y  e. 
{ w  e.  B  |  w R z }  -.  y R x )  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) )
5229, 51syl5bi 209 . . . . . . . 8  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  ( E. x  e.  { w  e.  B  |  w R z } A. y  e.  { w  e.  B  |  w R z }  -.  y R x  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) )
5327, 52syld 42 . . . . . . 7  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  ( { w  e.  B  |  w R z }  =/=  (/)  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) )
5413, 53pm2.61dne 2644 . . . . . 6  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  E. x  e.  B  A. y  e.  B  -.  y R x )
5554expr 599 . . . . 5  |-  ( ( ( R  We  A  /\  R Se  A )  /\  B  C_  A )  ->  ( z  e.  B  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) )
5655exlimdv 1643 . . . 4  |-  ( ( ( R  We  A  /\  R Se  A )  /\  B  C_  A )  ->  ( E. z 
z  e.  B  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) )
571, 56syl5bi 209 . . 3  |-  ( ( ( R  We  A  /\  R Se  A )  /\  B  C_  A )  ->  ( B  =/=  (/)  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) )
5857impr 603 . 2  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  B  =/=  (/) ) )  ->  E. x  e.  B  A. y  e.  B  -.  y R x )
59 simprl 733 . . . 4  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  B  =/=  (/) ) )  ->  B  C_  A
)
6032ad2antrr 707 . . . 4  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  B  =/=  (/) ) )  ->  R  Or  A
)
6159, 60, 34sylc 58 . . 3  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  B  =/=  (/) ) )  ->  R  Or  B
)
62 somo 4497 . . 3  |-  ( R  Or  B  ->  E* x  e.  B A. y  e.  B  -.  y R x )
6361, 62syl 16 . 2  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  B  =/=  (/) ) )  ->  E* x  e.  B A. y  e.  B  -.  y R x )
64 reu5 2881 . 2  |-  ( E! x  e.  B  A. y  e.  B  -.  y R x  <->  ( E. x  e.  B  A. y  e.  B  -.  y R x  /\  E* x  e.  B A. y  e.  B  -.  y R x ) )
6558, 63, 64sylanbrc 646 1  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  B  =/=  (/) ) )  ->  E! x  e.  B  A. y  e.  B  -.  y R x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667   E!wreu 2668   E*wrmo 2669   {crab 2670   _Vcvv 2916    C_ wss 3280   (/)c0 3588   class class class wbr 4172    Or wor 4462    Fr wfr 4498   Se wse 4499    We wwe 4500
This theorem is referenced by:  weniso  6034  ordtypelem3  7445  dfac8clem  7869  tz6.26  25419
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-br 4173  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503
  Copyright terms: Public domain W3C validator