MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wereu2 Unicode version

Theorem wereu2 4327
Description: All nonempty (possibly proper) subclasses of  A, which has a well-founded relation  R, have  R-minimal elements. Proposition 6.26 of [TakeutiZaring] p. 31. (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
wereu2  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  B  =/=  (/) ) )  ->  E! x  e.  B  A. y  e.  B  -.  y R x )
Distinct variable groups:    x, y, A    x, B, y    x, R, y

Proof of Theorem wereu2
StepHypRef Expression
1 n0 3406 . . . 4  |-  ( B  =/=  (/)  <->  E. z  z  e.  B )
2 rabeq0 3418 . . . . . . . 8  |-  ( { w  e.  B  |  w R z }  =  (/)  <->  A. w  e.  B  -.  w R z )
3 breq1 3966 . . . . . . . . . . . . . 14  |-  ( y  =  w  ->  (
y R x  <->  w R x ) )
43notbid 287 . . . . . . . . . . . . 13  |-  ( y  =  w  ->  ( -.  y R x  <->  -.  w R x ) )
54cbvralv 2717 . . . . . . . . . . . 12  |-  ( A. y  e.  B  -.  y R x  <->  A. w  e.  B  -.  w R x )
6 breq2 3967 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  (
w R x  <->  w R
z ) )
76notbid 287 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  ( -.  w R x  <->  -.  w R z ) )
87ralbidv 2534 . . . . . . . . . . . 12  |-  ( x  =  z  ->  ( A. w  e.  B  -.  w R x  <->  A. w  e.  B  -.  w R z ) )
95, 8syl5bb 250 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( A. y  e.  B  -.  y R x  <->  A. w  e.  B  -.  w R z ) )
109rcla4ev 2835 . . . . . . . . . 10  |-  ( ( z  e.  B  /\  A. w  e.  B  -.  w R z )  ->  E. x  e.  B  A. y  e.  B  -.  y R x )
1110ex 425 . . . . . . . . 9  |-  ( z  e.  B  ->  ( A. w  e.  B  -.  w R z  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) )
1211ad2antll 712 . . . . . . . 8  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  ( A. w  e.  B  -.  w R z  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) )
132, 12syl5bi 210 . . . . . . 7  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  ( { w  e.  B  |  w R z }  =  (/)  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) )
14 simprl 735 . . . . . . . . . . 11  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  B  C_  A )
15 simplr 734 . . . . . . . . . . 11  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  R Se  A )
16 sess2 4299 . . . . . . . . . . 11  |-  ( B 
C_  A  ->  ( R Se  A  ->  R Se  B
) )
1714, 15, 16sylc 58 . . . . . . . . . 10  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  R Se  B )
18 simprr 736 . . . . . . . . . 10  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  z  e.  B )
19 seex 4293 . . . . . . . . . 10  |-  ( ( R Se  B  /\  z  e.  B )  ->  { w  e.  B  |  w R z }  e.  _V )
2017, 18, 19syl2anc 645 . . . . . . . . 9  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  { w  e.  B  |  w R z }  e.  _V )
21 wefr 4320 . . . . . . . . . 10  |-  ( R  We  A  ->  R  Fr  A )
2221ad2antrr 709 . . . . . . . . 9  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  R  Fr  A )
23 ssrab2 3200 . . . . . . . . . 10  |-  { w  e.  B  |  w R z }  C_  B
2423, 14syl5ss 3132 . . . . . . . . 9  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  { w  e.  B  |  w R z }  C_  A )
25 fri 4292 . . . . . . . . . 10  |-  ( ( ( { w  e.  B  |  w R z }  e.  _V  /\  R  Fr  A )  /\  ( { w  e.  B  |  w R z }  C_  A  /\  { w  e.  B  |  w R z }  =/=  (/) ) )  ->  E. x  e.  {
w  e.  B  |  w R z } A. y  e.  { w  e.  B  |  w R z }  -.  y R x )
2625expr 601 . . . . . . . . 9  |-  ( ( ( { w  e.  B  |  w R z }  e.  _V  /\  R  Fr  A )  /\  { w  e.  B  |  w R z }  C_  A
)  ->  ( {
w  e.  B  |  w R z }  =/=  (/) 
->  E. x  e.  {
w  e.  B  |  w R z } A. y  e.  { w  e.  B  |  w R z }  -.  y R x ) )
2720, 22, 24, 26syl21anc 1186 . . . . . . . 8  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  ( { w  e.  B  |  w R z }  =/=  (/)  ->  E. x  e.  { w  e.  B  |  w R z } A. y  e.  {
w  e.  B  |  w R z }  -.  y R x ) )
28 breq1 3966 . . . . . . . . . 10  |-  ( w  =  x  ->  (
w R z  <->  x R
z ) )
2928rexrab 2880 . . . . . . . . 9  |-  ( E. x  e.  { w  e.  B  |  w R z } A. y  e.  { w  e.  B  |  w R z }  -.  y R x  <->  E. x  e.  B  ( x R z  /\  A. y  e.  { w  e.  B  |  w R z }  -.  y R x ) )
30 breq1 3966 . . . . . . . . . . . . 13  |-  ( w  =  y  ->  (
w R z  <->  y R
z ) )
3130ralrab 2878 . . . . . . . . . . . 12  |-  ( A. y  e.  { w  e.  B  |  w R z }  -.  y R x  <->  A. y  e.  B  ( y R z  ->  -.  y R x ) )
32 weso 4321 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( R  We  A  ->  R  Or  A )
3332ad2antrr 709 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  R  Or  A )
34 soss 4269 . . . . . . . . . . . . . . . . . . . . 21  |-  ( B 
C_  A  ->  ( R  Or  A  ->  R  Or  B ) )
3514, 33, 34sylc 58 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  R  Or  B )
3635ad2antrr 709 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B ) )  /\  x  e.  B )  /\  y  e.  B
)  ->  R  Or  B )
37 simpr 449 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B ) )  /\  x  e.  B )  /\  y  e.  B
)  ->  y  e.  B )
38 simplr 734 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B ) )  /\  x  e.  B )  /\  y  e.  B
)  ->  x  e.  B )
3918ad2antrr 709 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B ) )  /\  x  e.  B )  /\  y  e.  B
)  ->  z  e.  B )
40 sotr 4273 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  Or  B  /\  ( y  e.  B  /\  x  e.  B  /\  z  e.  B
) )  ->  (
( y R x  /\  x R z )  ->  y R
z ) )
4136, 37, 38, 39, 40syl13anc 1189 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B ) )  /\  x  e.  B )  /\  y  e.  B
)  ->  ( (
y R x  /\  x R z )  -> 
y R z ) )
4241ancomsd 442 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B ) )  /\  x  e.  B )  /\  y  e.  B
)  ->  ( (
x R z  /\  y R x )  -> 
y R z ) )
4342expdimp 428 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B ) )  /\  x  e.  B )  /\  y  e.  B
)  /\  x R
z )  ->  (
y R x  -> 
y R z ) )
4443an32s 782 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B ) )  /\  x  e.  B )  /\  x R z )  /\  y  e.  B
)  ->  ( y R x  ->  y R z ) )
4544con3d 127 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B ) )  /\  x  e.  B )  /\  x R z )  /\  y  e.  B
)  ->  ( -.  y R z  ->  -.  y R x ) )
46 idd 23 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B ) )  /\  x  e.  B )  /\  x R z )  /\  y  e.  B
)  ->  ( -.  y R x  ->  -.  y R x ) )
4745, 46jad 156 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B ) )  /\  x  e.  B )  /\  x R z )  /\  y  e.  B
)  ->  ( (
y R z  ->  -.  y R x )  ->  -.  y R x ) )
4847ralimdva 2592 . . . . . . . . . . . 12  |-  ( ( ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B ) )  /\  x  e.  B )  /\  x R z )  ->  ( A. y  e.  B  ( y R z  ->  -.  y R x )  ->  A. y  e.  B  -.  y R x ) )
4931, 48syl5bi 210 . . . . . . . . . . 11  |-  ( ( ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B ) )  /\  x  e.  B )  /\  x R z )  ->  ( A. y  e.  { w  e.  B  |  w R z }  -.  y R x  ->  A. y  e.  B  -.  y R x ) )
5049expimpd 589 . . . . . . . . . 10  |-  ( ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  /\  x  e.  B )  ->  (
( x R z  /\  A. y  e. 
{ w  e.  B  |  w R z }  -.  y R x )  ->  A. y  e.  B  -.  y R x ) )
5150reximdva 2626 . . . . . . . . 9  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  ( E. x  e.  B  ( x R z  /\  A. y  e. 
{ w  e.  B  |  w R z }  -.  y R x )  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) )
5229, 51syl5bi 210 . . . . . . . 8  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  ( E. x  e.  { w  e.  B  |  w R z } A. y  e.  { w  e.  B  |  w R z }  -.  y R x  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) )
5327, 52syld 42 . . . . . . 7  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  ( { w  e.  B  |  w R z }  =/=  (/)  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) )
5413, 53pm2.61dne 2496 . . . . . 6  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  z  e.  B
) )  ->  E. x  e.  B  A. y  e.  B  -.  y R x )
5554expr 601 . . . . 5  |-  ( ( ( R  We  A  /\  R Se  A )  /\  B  C_  A )  ->  ( z  e.  B  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) )
5655exlimdv 1933 . . . 4  |-  ( ( ( R  We  A  /\  R Se  A )  /\  B  C_  A )  ->  ( E. z 
z  e.  B  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) )
571, 56syl5bi 210 . . 3  |-  ( ( ( R  We  A  /\  R Se  A )  /\  B  C_  A )  ->  ( B  =/=  (/)  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) )
5857impr 605 . 2  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  B  =/=  (/) ) )  ->  E. x  e.  B  A. y  e.  B  -.  y R x )
59 simprl 735 . . . 4  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  B  =/=  (/) ) )  ->  B  C_  A
)
6032ad2antrr 709 . . . 4  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  B  =/=  (/) ) )  ->  R  Or  A
)
6159, 60, 34sylc 58 . . 3  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  B  =/=  (/) ) )  ->  R  Or  B
)
62 somo 4285 . . 3  |-  ( R  Or  B  ->  E* x ( x  e.  B  /\  A. y  e.  B  -.  y R x ) )
6361, 62syl 17 . 2  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  B  =/=  (/) ) )  ->  E* x ( x  e.  B  /\  A. y  e.  B  -.  y R x ) )
64 reu5 2905 . 2  |-  ( E! x  e.  B  A. y  e.  B  -.  y R x  <->  ( E. x  e.  B  A. y  e.  B  -.  y R x  /\  E* x ( x  e.  B  /\  A. y  e.  B  -.  y R x ) ) )
6558, 63, 64sylanbrc 648 1  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  B  =/=  (/) ) )  ->  E! x  e.  B  A. y  e.  B  -.  y R x )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360   E.wex 1537    = wceq 1619    e. wcel 1621   E*wmo 2118    =/= wne 2419   A.wral 2516   E.wrex 2517   E!wreu 2518   {crab 2519   _Vcvv 2740    C_ wss 3094   (/)c0 3397   class class class wbr 3963    Or wor 4250    Fr wfr 4286   Se wse 4287    We wwe 4288
This theorem is referenced by:  weniso  5751  ordtypelem3  7168  dfac8clem  7592  tz6.26  23539
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-sn 3587  df-pr 3588  df-op 3590  df-br 3964  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291
  Copyright terms: Public domain W3C validator