Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wfi Unicode version

Theorem wfi 24278
Description: The Principle of Well-Founded Induction. Theorem 6.27 of [TakeutiZaring] p. 32. This principle states that if  B is a subclass of a well-ordered class  A with the property that every element of  B whose inital segment is included in 
A is itself equal to  A. (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
wfi  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  A. y  e.  A  ( Pred ( R ,  A ,  y )  C_  B  ->  y  e.  B ) ) )  ->  A  =  B )
Distinct variable groups:    y, A    y, B    y, R

Proof of Theorem wfi
StepHypRef Expression
1 ssdif0 3526 . . . . . . 7  |-  ( A 
C_  B  <->  ( A  \  B )  =  (/) )
21necon3bbii 2490 . . . . . 6  |-  ( -.  A  C_  B  <->  ( A  \  B )  =/=  (/) )
3 difss 3316 . . . . . . 7  |-  ( A 
\  B )  C_  A
4 tz6.26 24276 . . . . . . . . 9  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( ( A  \  B )  C_  A  /\  ( A  \  B
)  =/=  (/) ) )  ->  E. y  e.  ( A  \  B )
Pred ( R , 
( A  \  B
) ,  y )  =  (/) )
5 eldif 3175 . . . . . . . . . . . . 13  |-  ( y  e.  ( A  \  B )  <->  ( y  e.  A  /\  -.  y  e.  B ) )
65anbi1i 676 . . . . . . . . . . . 12  |-  ( ( y  e.  ( A 
\  B )  /\  Pred ( R ,  ( A  \  B ) ,  y )  =  (/) )  <->  ( ( y  e.  A  /\  -.  y  e.  B )  /\  Pred ( R , 
( A  \  B
) ,  y )  =  (/) ) )
7 anass 630 . . . . . . . . . . . 12  |-  ( ( ( y  e.  A  /\  -.  y  e.  B
)  /\  Pred ( R ,  ( A  \  B ) ,  y )  =  (/) )  <->  ( y  e.  A  /\  ( -.  y  e.  B  /\  Pred ( R , 
( A  \  B
) ,  y )  =  (/) ) ) )
8 ancom 437 . . . . . . . . . . . . . 14  |-  ( ( -.  y  e.  B  /\  Pred ( R , 
( A  \  B
) ,  y )  =  (/) )  <->  ( Pred ( R ,  ( A 
\  B ) ,  y )  =  (/)  /\ 
-.  y  e.  B
) )
9 indif2 3425 . . . . . . . . . . . . . . . . . 18  |-  ( ( `' R " { y } )  i^i  ( A  \  B ) )  =  ( ( ( `' R " { y } )  i^i  A
)  \  B )
10 df-pred 24239 . . . . . . . . . . . . . . . . . . 19  |-  Pred ( R ,  ( A  \  B ) ,  y )  =  ( ( A  \  B )  i^i  ( `' R " { y } ) )
11 incom 3374 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  \  B )  i^i  ( `' R " { y } ) )  =  ( ( `' R " { y } )  i^i  ( A  \  B ) )
1210, 11eqtri 2316 . . . . . . . . . . . . . . . . . 18  |-  Pred ( R ,  ( A  \  B ) ,  y )  =  ( ( `' R " { y } )  i^i  ( A  \  B ) )
13 df-pred 24239 . . . . . . . . . . . . . . . . . . . 20  |-  Pred ( R ,  A , 
y )  =  ( A  i^i  ( `' R " { y } ) )
14 incom 3374 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  i^i  ( `' R " { y } ) )  =  ( ( `' R " { y } )  i^i  A
)
1513, 14eqtri 2316 . . . . . . . . . . . . . . . . . . 19  |-  Pred ( R ,  A , 
y )  =  ( ( `' R " { y } )  i^i  A )
1615difeq1i 3303 . . . . . . . . . . . . . . . . . 18  |-  ( Pred ( R ,  A ,  y )  \  B )  =  ( ( ( `' R " { y } )  i^i  A )  \  B )
179, 12, 163eqtr4i 2326 . . . . . . . . . . . . . . . . 17  |-  Pred ( R ,  ( A  \  B ) ,  y )  =  ( Pred ( R ,  A ,  y )  \  B )
1817eqeq1i 2303 . . . . . . . . . . . . . . . 16  |-  ( Pred ( R ,  ( A  \  B ) ,  y )  =  (/) 
<->  ( Pred ( R ,  A ,  y )  \  B )  =  (/) )
19 ssdif0 3526 . . . . . . . . . . . . . . . 16  |-  ( Pred ( R ,  A ,  y )  C_  B 
<->  ( Pred ( R ,  A ,  y )  \  B )  =  (/) )
2018, 19bitr4i 243 . . . . . . . . . . . . . . 15  |-  ( Pred ( R ,  ( A  \  B ) ,  y )  =  (/) 
<-> 
Pred ( R ,  A ,  y )  C_  B )
2120anbi1i 676 . . . . . . . . . . . . . 14  |-  ( (
Pred ( R , 
( A  \  B
) ,  y )  =  (/)  /\  -.  y  e.  B )  <->  ( Pred ( R ,  A , 
y )  C_  B  /\  -.  y  e.  B
) )
228, 21bitri 240 . . . . . . . . . . . . 13  |-  ( ( -.  y  e.  B  /\  Pred ( R , 
( A  \  B
) ,  y )  =  (/) )  <->  ( Pred ( R ,  A , 
y )  C_  B  /\  -.  y  e.  B
) )
2322anbi2i 675 . . . . . . . . . . . 12  |-  ( ( y  e.  A  /\  ( -.  y  e.  B  /\  Pred ( R , 
( A  \  B
) ,  y )  =  (/) ) )  <->  ( y  e.  A  /\  ( Pred ( R ,  A ,  y )  C_  B  /\  -.  y  e.  B ) ) )
246, 7, 233bitri 262 . . . . . . . . . . 11  |-  ( ( y  e.  ( A 
\  B )  /\  Pred ( R ,  ( A  \  B ) ,  y )  =  (/) )  <->  ( y  e.  A  /\  ( Pred ( R ,  A ,  y )  C_  B  /\  -.  y  e.  B ) ) )
2524rexbii2 2585 . . . . . . . . . 10  |-  ( E. y  e.  ( A 
\  B ) Pred ( R ,  ( A  \  B ) ,  y )  =  (/) 
<->  E. y  e.  A  ( Pred ( R ,  A ,  y )  C_  B  /\  -.  y  e.  B ) )
26 rexanali 2602 . . . . . . . . . 10  |-  ( E. y  e.  A  (
Pred ( R ,  A ,  y )  C_  B  /\  -.  y  e.  B )  <->  -.  A. y  e.  A  ( Pred ( R ,  A , 
y )  C_  B  ->  y  e.  B ) )
2725, 26bitri 240 . . . . . . . . 9  |-  ( E. y  e.  ( A 
\  B ) Pred ( R ,  ( A  \  B ) ,  y )  =  (/) 
<->  -.  A. y  e.  A  ( Pred ( R ,  A , 
y )  C_  B  ->  y  e.  B ) )
284, 27sylib 188 . . . . . . . 8  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( ( A  \  B )  C_  A  /\  ( A  \  B
)  =/=  (/) ) )  ->  -.  A. y  e.  A  ( Pred ( R ,  A , 
y )  C_  B  ->  y  e.  B ) )
2928ex 423 . . . . . . 7  |-  ( ( R  We  A  /\  R Se  A )  ->  (
( ( A  \  B )  C_  A  /\  ( A  \  B
)  =/=  (/) )  ->  -.  A. y  e.  A  ( Pred ( R ,  A ,  y )  C_  B  ->  y  e.  B ) ) )
303, 29mpani 657 . . . . . 6  |-  ( ( R  We  A  /\  R Se  A )  ->  (
( A  \  B
)  =/=  (/)  ->  -.  A. y  e.  A  (
Pred ( R ,  A ,  y )  C_  B  ->  y  e.  B ) ) )
312, 30syl5bi 208 . . . . 5  |-  ( ( R  We  A  /\  R Se  A )  ->  ( -.  A  C_  B  ->  -.  A. y  e.  A  ( Pred ( R ,  A ,  y )  C_  B  ->  y  e.  B ) ) )
3231con4d 97 . . . 4  |-  ( ( R  We  A  /\  R Se  A )  ->  ( A. y  e.  A  ( Pred ( R ,  A ,  y )  C_  B  ->  y  e.  B )  ->  A  C_  B ) )
3332imp 418 . . 3  |-  ( ( ( R  We  A  /\  R Se  A )  /\  A. y  e.  A  ( Pred ( R ,  A ,  y )  C_  B  ->  y  e.  B ) )  ->  A  C_  B )
3433adantrl 696 . 2  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  A. y  e.  A  ( Pred ( R ,  A ,  y )  C_  B  ->  y  e.  B ) ) )  ->  A  C_  B
)
35 simprl 732 . 2  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  A. y  e.  A  ( Pred ( R ,  A ,  y )  C_  B  ->  y  e.  B ) ) )  ->  B  C_  A
)
3634, 35eqssd 3209 1  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  A. y  e.  A  ( Pred ( R ,  A ,  y )  C_  B  ->  y  e.  B ) ) )  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557    \ cdif 3162    i^i cin 3164    C_ wss 3165   (/)c0 3468   {csn 3653   Se wse 4366    We wwe 4367   `'ccnv 4704   "cima 4708   Predcpred 24238
This theorem is referenced by:  wfii  24279  wfisg  24280
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-xp 4711  df-cnv 4713  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-pred 24239
  Copyright terms: Public domain W3C validator