Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wfis2g Structured version   Unicode version

Theorem wfis2g 25519
 Description: Well-Founded Induction Schema, using implicit substitution. (Contributed by Scott Fenton, 11-Feb-2011.)
Hypotheses
Ref Expression
wfis2g.1
wfis2g.2
Assertion
Ref Expression
wfis2g Se
Distinct variable groups:   ,,   ,   ,   ,,
Allowed substitution hints:   ()   ()

Proof of Theorem wfis2g
StepHypRef Expression
1 nfv 1630 . 2
2 wfis2g.1 . 2
3 wfis2g.2 . 2
41, 2, 3wfis2fg 25517 1 Se
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wa 360   wcel 1727  wral 2711   Se wse 4568   wwe 4569  cpred 25469 This theorem is referenced by:  wfis2  25520  wfr3g  25568 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pr 4432 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-reu 2718  df-rmo 2719  df-rab 2720  df-v 2964  df-sbc 3168  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-sn 3844  df-pr 3845  df-op 3847  df-br 4238  df-opab 4292  df-po 4532  df-so 4533  df-fr 4570  df-se 4571  df-we 4572  df-xp 4913  df-cnv 4915  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-pred 25470
 Copyright terms: Public domain W3C validator