MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wilthlem1 Unicode version

Theorem wilthlem1 20268
Description: The only elements that are equal to their own inverses in the multiplicative group of nonzero elements in  ZZ 
/  P ZZ are  1 and  -u 1  ==  P  -  1. (Note that from prmdiveq 12816,  ( N ^ ( P  - 
2 ) )  mod 
P is the modular inverse of  N in  ZZ  /  P ZZ. (Contributed by Mario Carneiro, 24-Jan-2015.)
Assertion
Ref Expression
wilthlem1  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  =  ( ( N ^ ( P  - 
2 ) )  mod 
P )  <->  ( N  =  1  \/  N  =  ( P  - 
1 ) ) ) )

Proof of Theorem wilthlem1
StepHypRef Expression
1 elfzelz 10764 . . . . . . . . . 10  |-  ( N  e.  ( 1 ... ( P  -  1 ) )  ->  N  e.  ZZ )
21adantl 454 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  e.  ZZ )
3 peano2zm 10029 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
42, 3syl 17 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  -  1 )  e.  ZZ )
54zcnd 10085 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  -  1 )  e.  CC )
62peano2zd 10087 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  +  1 )  e.  ZZ )
76zcnd 10085 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  +  1 )  e.  CC )
85, 7mulcomd 8824 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N  -  1 )  x.  ( N  +  1 ) )  =  ( ( N  +  1 )  x.  ( N  -  1 ) ) )
92zcnd 10085 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  e.  CC )
10 ax-1cn 8763 . . . . . . 7  |-  1  e.  CC
11 subsq 11176 . . . . . . 7  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N ^
2 )  -  (
1 ^ 2 ) )  =  ( ( N  +  1 )  x.  ( N  - 
1 ) ) )
129, 10, 11sylancl 646 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N ^ 2 )  -  ( 1 ^ 2 ) )  =  ( ( N  +  1 )  x.  ( N  -  1 ) ) )
139sqvald 11208 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N ^ 2 )  =  ( N  x.  N
) )
14 sq1 11164 . . . . . . . 8  |-  ( 1 ^ 2 )  =  1
1514a1i 12 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
1 ^ 2 )  =  1 )
1613, 15oveq12d 5810 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N ^ 2 )  -  ( 1 ^ 2 ) )  =  ( ( N  x.  N )  - 
1 ) )
178, 12, 163eqtr2d 2296 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N  -  1 )  x.  ( N  +  1 ) )  =  ( ( N  x.  N )  - 
1 ) )
1817breq2d 4009 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  ||  ( ( N  -  1 )  x.  ( N  +  1 ) )  <->  P  ||  (
( N  x.  N
)  -  1 ) ) )
19 1e0p1 10119 . . . . . . . 8  |-  1  =  ( 0  +  1 )
2019oveq1i 5802 . . . . . . 7  |-  ( 1 ... ( P  - 
1 ) )  =  ( ( 0  +  1 ) ... ( P  -  1 ) )
21 0z 10002 . . . . . . . 8  |-  0  e.  ZZ
22 fzp1ss 10803 . . . . . . . 8  |-  ( 0  e.  ZZ  ->  (
( 0  +  1 ) ... ( P  -  1 ) ) 
C_  ( 0 ... ( P  -  1 ) ) )
2321, 22ax-mp 10 . . . . . . 7  |-  ( ( 0  +  1 ) ... ( P  - 
1 ) )  C_  ( 0 ... ( P  -  1 ) )
2420, 23eqsstri 3183 . . . . . 6  |-  ( 1 ... ( P  - 
1 ) )  C_  ( 0 ... ( P  -  1 ) )
25 simpr 449 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  e.  ( 1 ... ( P  -  1 ) ) )
2624, 25sseldi 3153 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  e.  ( 0 ... ( P  -  1 ) ) )
2726biantrurd 496 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  ||  ( ( N  x.  N )  - 
1 )  <->  ( N  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( N  x.  N )  -  1 ) ) ) )
2818, 27bitrd 246 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  ||  ( ( N  -  1 )  x.  ( N  +  1 ) )  <->  ( N  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( N  x.  N )  -  1 ) ) ) )
29 simpl 445 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  P  e.  Prime )
30 euclemma 12749 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  -  1 )  e.  ZZ  /\  ( N  +  1 )  e.  ZZ )  -> 
( P  ||  (
( N  -  1 )  x.  ( N  +  1 ) )  <-> 
( P  ||  ( N  -  1 )  \/  P  ||  ( N  +  1 ) ) ) )
3129, 4, 6, 30syl3anc 1187 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  ||  ( ( N  -  1 )  x.  ( N  +  1 ) )  <->  ( P  ||  ( N  -  1 )  \/  P  ||  ( N  +  1
) ) ) )
32 prmnn 12724 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  NN )
33 fzm1ndvds 12542 . . . . 5  |-  ( ( P  e.  NN  /\  N  e.  ( 1 ... ( P  - 
1 ) ) )  ->  -.  P  ||  N
)
3432, 33sylan 459 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  -.  P  ||  N )
35 eqid 2258 . . . . 5  |-  ( ( N ^ ( P  -  2 ) )  mod  P )  =  ( ( N ^
( P  -  2 ) )  mod  P
)
3635prmdiveq 12816 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  -.  P  ||  N )  ->  (
( N  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  (
( N  x.  N
)  -  1 ) )  <->  N  =  (
( N ^ ( P  -  2 ) )  mod  P ) ) )
3729, 2, 34, 36syl3anc 1187 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  (
( N  x.  N
)  -  1 ) )  <->  N  =  (
( N ^ ( P  -  2 ) )  mod  P ) ) )
3828, 31, 373bitr3rd 277 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  =  ( ( N ^ ( P  - 
2 ) )  mod 
P )  <->  ( P  ||  ( N  -  1 )  \/  P  ||  ( N  +  1
) ) ) )
3929, 32syl 17 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  P  e.  NN )
40 1z 10020 . . . . . 6  |-  1  e.  ZZ
4140a1i 12 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  1  e.  ZZ )
42 moddvds 12500 . . . . 5  |-  ( ( P  e.  NN  /\  N  e.  ZZ  /\  1  e.  ZZ )  ->  (
( N  mod  P
)  =  ( 1  mod  P )  <->  P  ||  ( N  -  1 ) ) )
4339, 2, 41, 42syl3anc 1187 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N  mod  P
)  =  ( 1  mod  P )  <->  P  ||  ( N  -  1 ) ) )
44 elfznn 10785 . . . . . . . 8  |-  ( N  e.  ( 1 ... ( P  -  1 ) )  ->  N  e.  NN )
4544adantl 454 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  e.  NN )
4645nnred 9729 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  e.  RR )
4739nnrpd 10356 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  P  e.  RR+ )
4845nnnn0d 9985 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  e.  NN0 )
4948nn0ge0d 9988 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  0  <_  N )
50 elfzle2 10766 . . . . . . . 8  |-  ( N  e.  ( 1 ... ( P  -  1 ) )  ->  N  <_  ( P  -  1 ) )
5150adantl 454 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  <_  ( P  -  1 ) )
52 prmz 12723 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  ZZ )
53 zltlem1 10037 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  P  e.  ZZ )  ->  ( N  <  P  <->  N  <_  ( P  - 
1 ) ) )
541, 52, 53syl2anr 466 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  <  P  <->  N  <_  ( P  -  1 ) ) )
5551, 54mpbird 225 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  N  <  P )
56 modid 10959 . . . . . 6  |-  ( ( ( N  e.  RR  /\  P  e.  RR+ )  /\  ( 0  <_  N  /\  N  <  P ) )  ->  ( N  mod  P )  =  N )
5746, 47, 49, 55, 56syl22anc 1188 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  mod  P )  =  N )
5839nnred 9729 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  P  e.  RR )
59 prmuz2 12738 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
6029, 59syl 17 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  P  e.  ( ZZ>= `  2 )
)
61 eluz2b2 10257 . . . . . . . 8  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  1  < 
P ) )
6261simprbi 452 . . . . . . 7  |-  ( P  e.  ( ZZ>= `  2
)  ->  1  <  P )
6360, 62syl 17 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  1  <  P )
64 1mod 10962 . . . . . 6  |-  ( ( P  e.  RR  /\  1  <  P )  -> 
( 1  mod  P
)  =  1 )
6558, 63, 64syl2anc 645 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
1  mod  P )  =  1 )
6657, 65eqeq12d 2272 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N  mod  P
)  =  ( 1  mod  P )  <->  N  = 
1 ) )
6743, 66bitr3d 248 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  ||  ( N  - 
1 )  <->  N  = 
1 ) )
6841znegcld 10086 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  -u 1  e.  ZZ )
69 moddvds 12500 . . . . 5  |-  ( ( P  e.  NN  /\  N  e.  ZZ  /\  -u 1  e.  ZZ )  ->  (
( N  mod  P
)  =  ( -u
1  mod  P )  <->  P 
||  ( N  -  -u 1 ) ) )
7039, 2, 68, 69syl3anc 1187 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N  mod  P
)  =  ( -u
1  mod  P )  <->  P 
||  ( N  -  -u 1 ) ) )
7139nncnd 9730 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  P  e.  CC )
7271mulid2d 8821 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
1  x.  P )  =  P )
7372oveq2d 5808 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( -u 1  +  ( 1  x.  P ) )  =  ( -u 1  +  P ) )
74 neg1cn 9781 . . . . . . . . 9  |-  -u 1  e.  CC
75 addcom 8966 . . . . . . . . 9  |-  ( (
-u 1  e.  CC  /\  P  e.  CC )  ->  ( -u 1  +  P )  =  ( P  +  -u 1
) )
7674, 71, 75sylancr 647 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( -u 1  +  P )  =  ( P  +  -u 1 ) )
77 negsub 9063 . . . . . . . . 9  |-  ( ( P  e.  CC  /\  1  e.  CC )  ->  ( P  +  -u
1 )  =  ( P  -  1 ) )
7871, 10, 77sylancl 646 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  +  -u 1 )  =  ( P  - 
1 ) )
7973, 76, 783eqtrd 2294 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( -u 1  +  ( 1  x.  P ) )  =  ( P  - 
1 ) )
8079oveq1d 5807 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( -u 1  +  ( 1  x.  P ) )  mod  P )  =  ( ( P  -  1 )  mod 
P ) )
81 1re 8805 . . . . . . . . 9  |-  1  e.  RR
8281renegcli 9076 . . . . . . . 8  |-  -u 1  e.  RR
8382a1i 12 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  -u 1  e.  RR )
84 modcyc 10965 . . . . . . 7  |-  ( (
-u 1  e.  RR  /\  P  e.  RR+  /\  1  e.  ZZ )  ->  (
( -u 1  +  ( 1  x.  P ) )  mod  P )  =  ( -u 1  mod  P ) )
8583, 47, 41, 84syl3anc 1187 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( -u 1  +  ( 1  x.  P ) )  mod  P )  =  ( -u 1  mod  P ) )
86 peano2rem 9081 . . . . . . . 8  |-  ( P  e.  RR  ->  ( P  -  1 )  e.  RR )
8758, 86syl 17 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  -  1 )  e.  RR )
88 nnm1nn0 9972 . . . . . . . . 9  |-  ( P  e.  NN  ->  ( P  -  1 )  e.  NN0 )
8939, 88syl 17 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  -  1 )  e.  NN0 )
9089nn0ge0d 9988 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  0  <_  ( P  -  1 ) )
9158ltm1d 9657 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  -  1 )  <  P )
92 modid 10959 . . . . . . 7  |-  ( ( ( ( P  - 
1 )  e.  RR  /\  P  e.  RR+ )  /\  ( 0  <_  ( P  -  1 )  /\  ( P  - 
1 )  <  P
) )  ->  (
( P  -  1 )  mod  P )  =  ( P  - 
1 ) )
9387, 47, 90, 91, 92syl22anc 1188 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( P  -  1 )  mod  P )  =  ( P  - 
1 ) )
9480, 85, 933eqtr3d 2298 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( -u 1  mod  P )  =  ( P  - 
1 ) )
9557, 94eqeq12d 2272 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( N  mod  P
)  =  ( -u
1  mod  P )  <->  N  =  ( P  - 
1 ) ) )
96 subneg 9064 . . . . . 6  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( N  -  -u 1
)  =  ( N  +  1 ) )
979, 10, 96sylancl 646 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  -  -u 1 )  =  ( N  + 
1 ) )
9897breq2d 4009 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  ||  ( N  -  -u 1 )  <->  P  ||  ( N  +  1 ) ) )
9970, 95, 983bitr3rd 277 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( P  ||  ( N  + 
1 )  <->  N  =  ( P  -  1
) ) )
10067, 99orbi12d 693 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  (
( P  ||  ( N  -  1 )  \/  P  ||  ( N  +  1 ) )  <->  ( N  =  1  \/  N  =  ( P  -  1 ) ) ) )
10138, 100bitrd 246 1  |-  ( ( P  e.  Prime  /\  N  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( N  =  ( ( N ^ ( P  - 
2 ) )  mod 
P )  <->  ( N  =  1  \/  N  =  ( P  - 
1 ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1619    e. wcel 1621    C_ wss 3127   class class class wbr 3997   ` cfv 4673  (class class class)co 5792   CCcc 8703   RRcr 8704   0cc0 8705   1c1 8706    + caddc 8708    x. cmul 8710    < clt 8835    <_ cle 8836    - cmin 9005   -ucneg 9006   NNcn 9714   2c2 9763   NN0cn0 9932   ZZcz 9991   ZZ>=cuz 10197   RR+crp 10321   ...cfz 10748    mod cmo 10939   ^cexp 11070    || cdivides 12493   Primecprime 12720
This theorem is referenced by:  wilthlem2  20269
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-2o 6448  df-oadd 6451  df-er 6628  df-map 6742  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-sup 7162  df-card 7540  df-cda 7762  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-n0 9933  df-z 9992  df-uz 10198  df-rp 10322  df-fz 10749  df-fzo 10837  df-fl 10891  df-mod 10940  df-seq 11013  df-exp 11071  df-hash 11304  df-cj 11549  df-re 11550  df-im 11551  df-sqr 11685  df-abs 11686  df-divides 12494  df-gcd 12648  df-prime 12721  df-phi 12796
  Copyright terms: Public domain W3C validator