MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  winalim2 Structured version   Unicode version

Theorem winalim2 8571
Description: A nontrivial weakly inaccessible cardinal is a limit aleph. (Contributed by Mario Carneiro, 29-May-2014.)
Assertion
Ref Expression
winalim2  |-  ( ( A  e.  Inacc W  /\  A  =/=  om )  ->  E. x ( ( aleph `  x )  =  A  /\  Lim  x ) )
Distinct variable group:    x, A

Proof of Theorem winalim2
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 winacard 8567 . . . 4  |-  ( A  e.  Inacc W  ->  ( card `  A )  =  A )
2 winainf 8569 . . . . 5  |-  ( A  e.  Inacc W  ->  om  C_  A
)
3 cardalephex 7971 . . . . 5  |-  ( om  C_  A  ->  ( (
card `  A )  =  A  <->  E. x  e.  On  A  =  ( aleph `  x ) ) )
42, 3syl 16 . . . 4  |-  ( A  e.  Inacc W  ->  (
( card `  A )  =  A  <->  E. x  e.  On  A  =  ( aleph `  x ) ) )
51, 4mpbid 202 . . 3  |-  ( A  e.  Inacc W  ->  E. x  e.  On  A  =  (
aleph `  x ) )
65adantr 452 . 2  |-  ( ( A  e.  Inacc W  /\  A  =/=  om )  ->  E. x  e.  On  A  =  ( aleph `  x ) )
7 df-rex 2711 . . 3  |-  ( E. x  e.  On  A  =  ( aleph `  x
)  <->  E. x ( x  e.  On  /\  A  =  ( aleph `  x
) ) )
8 simprr 734 . . . . . . 7  |-  ( ( ( A  e.  Inacc W  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  A  =  ( aleph `  x
) )
98eqcomd 2441 . . . . . 6  |-  ( ( ( A  e.  Inacc W  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  ( aleph `  x )  =  A )
10 simprl 733 . . . . . . . 8  |-  ( ( ( A  e.  Inacc W  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  x  e.  On )
11 onzsl 4826 . . . . . . . 8  |-  ( x  e.  On  <->  ( x  =  (/)  \/  E. y  e.  On  x  =  suc  y  \/  ( x  e.  _V  /\  Lim  x
) ) )
1210, 11sylib 189 . . . . . . 7  |-  ( ( ( A  e.  Inacc W  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  (
x  =  (/)  \/  E. y  e.  On  x  =  suc  y  \/  (
x  e.  _V  /\  Lim  x ) ) )
13 simplr 732 . . . . . . . . . 10  |-  ( ( ( A  e.  Inacc W  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  A  =/=  om )
14 fveq2 5728 . . . . . . . . . . . . . 14  |-  ( x  =  (/)  ->  ( aleph `  x )  =  (
aleph `  (/) ) )
15 aleph0 7947 . . . . . . . . . . . . . 14  |-  ( aleph `  (/) )  =  om
1614, 15syl6eq 2484 . . . . . . . . . . . . 13  |-  ( x  =  (/)  ->  ( aleph `  x )  =  om )
17 eqtr 2453 . . . . . . . . . . . . 13  |-  ( ( A  =  ( aleph `  x )  /\  ( aleph `  x )  =  om )  ->  A  =  om )
1816, 17sylan2 461 . . . . . . . . . . . 12  |-  ( ( A  =  ( aleph `  x )  /\  x  =  (/) )  ->  A  =  om )
1918ex 424 . . . . . . . . . . 11  |-  ( A  =  ( aleph `  x
)  ->  ( x  =  (/)  ->  A  =  om ) )
2019necon3ad 2637 . . . . . . . . . 10  |-  ( A  =  ( aleph `  x
)  ->  ( A  =/=  om  ->  -.  x  =  (/) ) )
218, 13, 20sylc 58 . . . . . . . . 9  |-  ( ( ( A  e.  Inacc W  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  -.  x  =  (/) )
2221pm2.21d 100 . . . . . . . 8  |-  ( ( ( A  e.  Inacc W  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  (
x  =  (/)  ->  Lim  x ) )
23 suceloni 4793 . . . . . . . . . . . . . . . 16  |-  ( y  e.  On  ->  suc  y  e.  On )
24 vex 2959 . . . . . . . . . . . . . . . . 17  |-  y  e. 
_V
2524sucid 4660 . . . . . . . . . . . . . . . 16  |-  y  e. 
suc  y
26 alephord2i 7958 . . . . . . . . . . . . . . . 16  |-  ( suc  y  e.  On  ->  ( y  e.  suc  y  ->  ( aleph `  y )  e.  ( aleph `  suc  y ) ) )
2723, 25, 26ee10 1385 . . . . . . . . . . . . . . 15  |-  ( y  e.  On  ->  ( aleph `  y )  e.  ( aleph `  suc  y ) )
2827ad2antrl 709 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
Inacc W  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  ( aleph `  y
)  e.  ( aleph ` 
suc  y ) )
29 simplrr 738 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
Inacc W  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  A  =  (
aleph `  x ) )
30 fveq2 5728 . . . . . . . . . . . . . . . 16  |-  ( x  =  suc  y  -> 
( aleph `  x )  =  ( aleph `  suc  y ) )
3130ad2antll 710 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
Inacc W  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  ( aleph `  x
)  =  ( aleph ` 
suc  y ) )
3229, 31eqtrd 2468 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
Inacc W  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  A  =  (
aleph `  suc  y ) )
3328, 32eleqtrrd 2513 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
Inacc W  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  ( aleph `  y
)  e.  A )
34 elwina 8561 . . . . . . . . . . . . . . 15  |-  ( A  e.  Inacc W  <->  ( A  =/=  (/)  /\  ( cf `  A )  =  A  /\  A. z  e.  A  E. w  e.  A  z  ~<  w
) )
3534simp3bi 974 . . . . . . . . . . . . . 14  |-  ( A  e.  Inacc W  ->  A. z  e.  A  E. w  e.  A  z  ~<  w )
3635ad3antrrr 711 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
Inacc W  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  A. z  e.  A  E. w  e.  A  z  ~<  w )
37 breq1 4215 . . . . . . . . . . . . . . 15  |-  ( z  =  ( aleph `  y
)  ->  ( z  ~<  w  <->  ( aleph `  y
)  ~<  w ) )
3837rexbidv 2726 . . . . . . . . . . . . . 14  |-  ( z  =  ( aleph `  y
)  ->  ( E. w  e.  A  z  ~<  w  <->  E. w  e.  A  ( aleph `  y )  ~<  w ) )
3938rspcva 3050 . . . . . . . . . . . . 13  |-  ( ( ( aleph `  y )  e.  A  /\  A. z  e.  A  E. w  e.  A  z  ~<  w )  ->  E. w  e.  A  ( aleph `  y )  ~<  w
)
4033, 36, 39syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
Inacc W  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  E. w  e.  A  ( aleph `  y )  ~<  w )
4140expr 599 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
Inacc W  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  y  e.  On )  ->  ( x  =  suc  y  ->  E. w  e.  A  ( aleph `  y )  ~<  w
) )
42 iscard 7862 . . . . . . . . . . . . . . . . . . 19  |-  ( (
card `  A )  =  A  <->  ( A  e.  On  /\  A. w  e.  A  w  ~<  A ) )
4342simprbi 451 . . . . . . . . . . . . . . . . . 18  |-  ( (
card `  A )  =  A  ->  A. w  e.  A  w  ~<  A )
44 rsp 2766 . . . . . . . . . . . . . . . . . 18  |-  ( A. w  e.  A  w  ~<  A  ->  ( w  e.  A  ->  w  ~<  A ) )
451, 43, 443syl 19 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  Inacc W  ->  (
w  e.  A  ->  w  ~<  A ) )
4645ad3antrrr 711 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
Inacc W  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  ( w  e.  A  ->  w  ~<  A ) )
4732breq2d 4224 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
Inacc W  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  ( w  ~<  A  <-> 
w  ~<  ( aleph `  suc  y ) ) )
4846, 47sylibd 206 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
Inacc W  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  ( w  e.  A  ->  w  ~<  (
aleph `  suc  y ) ) )
49 alephnbtwn2 7953 . . . . . . . . . . . . . . . 16  |-  -.  (
( aleph `  y )  ~<  w  /\  w  ~<  (
aleph `  suc  y ) )
50 pm3.21 436 . . . . . . . . . . . . . . . 16  |-  ( w 
~<  ( aleph `  suc  y )  ->  ( ( aleph `  y )  ~<  w  ->  ( ( aleph `  y
)  ~<  w  /\  w  ~<  ( aleph `  suc  y ) ) ) )
5149, 50mtoi 171 . . . . . . . . . . . . . . 15  |-  ( w 
~<  ( aleph `  suc  y )  ->  -.  ( aleph `  y )  ~<  w
)
5248, 51syl6 31 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
Inacc W  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  ( w  e.  A  ->  -.  ( aleph `  y )  ~<  w ) )
5352imp 419 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  Inacc W  /\  A  =/=  om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  /\  w  e.  A
)  ->  -.  ( aleph `  y )  ~<  w )
5453nrexdv 2809 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
Inacc W  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  ( y  e.  On  /\  x  =  suc  y ) )  ->  -.  E. w  e.  A  ( aleph `  y )  ~<  w
)
5554expr 599 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
Inacc W  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  y  e.  On )  ->  ( x  =  suc  y  ->  -.  E. w  e.  A  (
aleph `  y )  ~<  w ) )
5641, 55pm2.65d 168 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Inacc W  /\  A  =/= 
om )  /\  (
x  e.  On  /\  A  =  ( aleph `  x ) ) )  /\  y  e.  On )  ->  -.  x  =  suc  y )
5756nrexdv 2809 . . . . . . . . 9  |-  ( ( ( A  e.  Inacc W  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  -.  E. y  e.  On  x  =  suc  y )
5857pm2.21d 100 . . . . . . . 8  |-  ( ( ( A  e.  Inacc W  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  ( E. y  e.  On  x  =  suc  y  ->  Lim  x ) )
59 simpr 448 . . . . . . . . 9  |-  ( ( x  e.  _V  /\  Lim  x )  ->  Lim  x )
6059a1i 11 . . . . . . . 8  |-  ( ( ( A  e.  Inacc W  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  (
( x  e.  _V  /\ 
Lim  x )  ->  Lim  x ) )
6122, 58, 603jaod 1248 . . . . . . 7  |-  ( ( ( A  e.  Inacc W  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  (
( x  =  (/)  \/ 
E. y  e.  On  x  =  suc  y  \/  ( x  e.  _V  /\ 
Lim  x ) )  ->  Lim  x )
)
6212, 61mpd 15 . . . . . 6  |-  ( ( ( A  e.  Inacc W  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  Lim  x )
639, 62jca 519 . . . . 5  |-  ( ( ( A  e.  Inacc W  /\  A  =/=  om )  /\  ( x  e.  On  /\  A  =  ( aleph `  x )
) )  ->  (
( aleph `  x )  =  A  /\  Lim  x
) )
6463ex 424 . . . 4  |-  ( ( A  e.  Inacc W  /\  A  =/=  om )  -> 
( ( x  e.  On  /\  A  =  ( aleph `  x )
)  ->  ( ( aleph `  x )  =  A  /\  Lim  x
) ) )
6564eximdv 1632 . . 3  |-  ( ( A  e.  Inacc W  /\  A  =/=  om )  -> 
( E. x ( x  e.  On  /\  A  =  ( aleph `  x ) )  ->  E. x ( ( aleph `  x )  =  A  /\  Lim  x ) ) )
667, 65syl5bi 209 . 2  |-  ( ( A  e.  Inacc W  /\  A  =/=  om )  -> 
( E. x  e.  On  A  =  (
aleph `  x )  ->  E. x ( ( aleph `  x )  =  A  /\  Lim  x ) ) )
676, 66mpd 15 1  |-  ( ( A  e.  Inacc W  /\  A  =/=  om )  ->  E. x ( ( aleph `  x )  =  A  /\  Lim  x ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    \/ w3o 935   E.wex 1550    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705   E.wrex 2706   _Vcvv 2956    C_ wss 3320   (/)c0 3628   class class class wbr 4212   Oncon0 4581   Lim wlim 4582   suc csuc 4583   omcom 4845   ` cfv 5454    ~< csdm 7108   cardccrd 7822   alephcale 7823   cfccf 7824   Inacc Wcwina 8557
This theorem is referenced by:  winafp  8572
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-oi 7479  df-har 7526  df-card 7826  df-aleph 7827  df-cf 7828  df-wina 8559
  Copyright terms: Public domain W3C validator