MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xadddilem Unicode version

Theorem xadddilem 10630
Description: Lemma for xadddi 10631. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xadddilem  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  ( A x e ( B + e C ) )  =  ( ( A x e B ) + e ( A x e C ) ) )

Proof of Theorem xadddilem
StepHypRef Expression
1 simpl2 959 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  B  e.  RR* )
2 elxr 10474 . . 3  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = 
+oo  \/  B  =  -oo ) )
31, 2sylib 188 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  ( B  e.  RR  \/  B  =  +oo  \/  B  =  -oo ) )
4 simpl3 960 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  C  e.  RR* )
5 elxr 10474 . . . . . 6  |-  ( C  e.  RR*  <->  ( C  e.  RR  \/  C  = 
+oo  \/  C  =  -oo ) )
64, 5sylib 188 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  ( C  e.  RR  \/  C  =  +oo  \/  C  =  -oo ) )
76adantr 451 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  e.  RR )  ->  ( C  e.  RR  \/  C  =  +oo  \/  C  =  -oo ) )
8 simpl1 958 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  A  e.  RR )
9 recn 8843 . . . . . . . . . 10  |-  ( A  e.  RR  ->  A  e.  CC )
10 recn 8843 . . . . . . . . . 10  |-  ( B  e.  RR  ->  B  e.  CC )
11 recn 8843 . . . . . . . . . 10  |-  ( C  e.  RR  ->  C  e.  CC )
12 adddi 8842 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  +  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
139, 10, 11, 12syl3an 1224 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  x.  ( B  +  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
14133expa 1151 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( A  x.  ( B  +  C
) )  =  ( ( A  x.  B
)  +  ( A  x.  C ) ) )
15 readdcl 8836 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C
)  e.  RR )
16 rexmul 10607 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( B  +  C
)  e.  RR )  ->  ( A x e ( B  +  C ) )  =  ( A  x.  ( B  +  C )
) )
1715, 16sylan2 460 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  ( A x e ( B  +  C ) )  =  ( A  x.  ( B  +  C )
) )
1817anassrs 629 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( A x e ( B  +  C ) )  =  ( A  x.  ( B  +  C )
) )
19 remulcl 8838 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
2019adantr 451 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( A  x.  B )  e.  RR )
21 remulcl 8838 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  x.  C
)  e.  RR )
2221adantlr 695 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( A  x.  C )  e.  RR )
23 rexadd 10575 . . . . . . . . 9  |-  ( ( ( A  x.  B
)  e.  RR  /\  ( A  x.  C
)  e.  RR )  ->  ( ( A  x.  B ) + e ( A  x.  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
2420, 22, 23syl2anc 642 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( ( A  x.  B ) + e ( A  x.  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
2514, 18, 243eqtr4d 2338 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( A x e ( B  +  C ) )  =  ( ( A  x.  B ) + e
( A  x.  C
) ) )
26 rexadd 10575 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B + e C )  =  ( B  +  C ) )
2726adantll 694 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( B + e C )  =  ( B  +  C ) )
2827oveq2d 5890 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( A x e ( B + e C ) )  =  ( A x e ( B  +  C
) ) )
29 rexmul 10607 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A x e B )  =  ( A  x.  B ) )
3029adantr 451 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( A x e B )  =  ( A  x.  B
) )
31 rexmul 10607 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A x e C )  =  ( A  x.  C ) )
3231adantlr 695 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( A x e C )  =  ( A  x.  C
) )
3330, 32oveq12d 5892 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( ( A x e B ) + e ( A x e C ) )  =  ( ( A  x.  B ) + e ( A  x.  C ) ) )
3425, 28, 333eqtr4d 2338 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( A x e ( B + e C ) )  =  ( ( A x e B ) + e ( A x e C ) ) )
358, 34sylanl1 631 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( A x e ( B + e C ) )  =  ( ( A x e B ) + e ( A x e C ) ) )
36 rexr 8893 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  A  e.  RR* )
37363ad2ant1 976 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  ->  A  e.  RR* )
38 xmulpnf1 10610 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  0  <  A )  ->  ( A x e  +oo )  =  +oo )
3937, 38sylan 457 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  ( A x e  +oo )  =  +oo )
4039adantr 451 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  e.  RR )  ->  ( A x e  +oo )  =  +oo )
4129, 19eqeltrd 2370 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A x e B )  e.  RR )
428, 41sylan 457 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  e.  RR )  ->  ( A x e B )  e.  RR )
43 rexr 8893 . . . . . . . . . 10  |-  ( ( A x e B )  e.  RR  ->  ( A x e B )  e.  RR* )
44 renemnf 8896 . . . . . . . . . 10  |-  ( ( A x e B )  e.  RR  ->  ( A x e B )  =/=  -oo )
45 xaddpnf1 10569 . . . . . . . . . 10  |-  ( ( ( A x e B )  e.  RR*  /\  ( A x e B )  =/=  -oo )  ->  ( ( A x e B ) + e  +oo )  =  +oo )
4643, 44, 45syl2anc 642 . . . . . . . . 9  |-  ( ( A x e B )  e.  RR  ->  ( ( A x e B ) + e  +oo )  =  +oo )
4742, 46syl 15 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  e.  RR )  ->  (
( A x e B ) + e  +oo )  =  +oo )
4840, 47eqtr4d 2331 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  e.  RR )  ->  ( A x e  +oo )  =  ( ( A x e B ) + e  +oo )
)
4948adantr 451 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  =  +oo )  ->  ( A x e  +oo )  =  ( ( A x e B ) + e  +oo )
)
50 oveq2 5882 . . . . . . . 8  |-  ( C  =  +oo  ->  ( B + e C )  =  ( B + e  +oo ) )
51 rexr 8893 . . . . . . . . . 10  |-  ( B  e.  RR  ->  B  e.  RR* )
52 renemnf 8896 . . . . . . . . . 10  |-  ( B  e.  RR  ->  B  =/=  -oo )
53 xaddpnf1 10569 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  B  =/=  -oo )  ->  ( B + e  +oo )  =  +oo )
5451, 52, 53syl2anc 642 . . . . . . . . 9  |-  ( B  e.  RR  ->  ( B + e  +oo )  =  +oo )
5554adantl 452 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  e.  RR )  ->  ( B + e  +oo )  =  +oo )
5650, 55sylan9eqr 2350 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  =  +oo )  ->  ( B + e C )  =  +oo )
5756oveq2d 5890 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  =  +oo )  ->  ( A x e ( B + e C ) )  =  ( A x e  +oo )
)
58 oveq2 5882 . . . . . . . 8  |-  ( C  =  +oo  ->  ( A x e C )  =  ( A x e  +oo ) )
5958, 40sylan9eqr 2350 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  =  +oo )  ->  ( A x e C )  =  +oo )
6059oveq2d 5890 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  =  +oo )  ->  (
( A x e B ) + e
( A x e C ) )  =  ( ( A x e B ) + e  +oo ) )
6149, 57, 603eqtr4d 2338 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  =  +oo )  ->  ( A x e ( B + e C ) )  =  ( ( A x e B ) + e ( A x e C ) ) )
62 xmulmnf1 10612 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  0  <  A )  ->  ( A x e  -oo )  =  -oo )
6337, 62sylan 457 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  ( A x e  -oo )  =  -oo )
6463adantr 451 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  e.  RR )  ->  ( A x e  -oo )  =  -oo )
6564adantr 451 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  =  -oo )  ->  ( A x e  -oo )  =  -oo )
6642adantr 451 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  =  -oo )  ->  ( A x e B )  e.  RR )
67 renepnf 8895 . . . . . . . . 9  |-  ( ( A x e B )  e.  RR  ->  ( A x e B )  =/=  +oo )
68 xaddmnf1 10571 . . . . . . . . 9  |-  ( ( ( A x e B )  e.  RR*  /\  ( A x e B )  =/=  +oo )  ->  ( ( A x e B ) + e  -oo )  =  -oo )
6943, 67, 68syl2anc 642 . . . . . . . 8  |-  ( ( A x e B )  e.  RR  ->  ( ( A x e B ) + e  -oo )  =  -oo )
7066, 69syl 15 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  =  -oo )  ->  (
( A x e B ) + e  -oo )  =  -oo )
7165, 70eqtr4d 2331 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  =  -oo )  ->  ( A x e  -oo )  =  ( ( A x e B ) + e  -oo )
)
72 oveq2 5882 . . . . . . . 8  |-  ( C  =  -oo  ->  ( B + e C )  =  ( B + e  -oo ) )
73 renepnf 8895 . . . . . . . . . 10  |-  ( B  e.  RR  ->  B  =/=  +oo )
74 xaddmnf1 10571 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  B  =/=  +oo )  ->  ( B + e  -oo )  =  -oo )
7551, 73, 74syl2anc 642 . . . . . . . . 9  |-  ( B  e.  RR  ->  ( B + e  -oo )  =  -oo )
7675adantl 452 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  e.  RR )  ->  ( B + e  -oo )  =  -oo )
7772, 76sylan9eqr 2350 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  =  -oo )  ->  ( B + e C )  =  -oo )
7877oveq2d 5890 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  =  -oo )  ->  ( A x e ( B + e C ) )  =  ( A x e  -oo )
)
79 oveq2 5882 . . . . . . . 8  |-  ( C  =  -oo  ->  ( A x e C )  =  ( A x e  -oo ) )
8079, 64sylan9eqr 2350 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  =  -oo )  ->  ( A x e C )  =  -oo )
8180oveq2d 5890 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  =  -oo )  ->  (
( A x e B ) + e
( A x e C ) )  =  ( ( A x e B ) + e  -oo ) )
8271, 78, 813eqtr4d 2338 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  C  =  -oo )  ->  ( A x e ( B + e C ) )  =  ( ( A x e B ) + e ( A x e C ) ) )
8335, 61, 823jaodan 1248 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  e.  RR )  /\  ( C  e.  RR  \/  C  =  +oo  \/  C  =  -oo ) )  -> 
( A x e ( B + e C ) )  =  ( ( A x e B ) + e ( A x e C ) ) )
847, 83mpdan 649 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  e.  RR )  ->  ( A x e ( B + e C ) )  =  ( ( A x e B ) + e ( A x e C ) ) )
856adantr 451 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  =  +oo )  ->  ( C  e.  RR  \/  C  =  +oo  \/  C  =  -oo ) )
8639ad2antrr 706 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  +oo )  /\  C  e.  RR )  ->  ( A x e  +oo )  =  +oo )
878adantr 451 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  =  +oo )  ->  A  e.  RR )
8831, 21eqeltrd 2370 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A x e C )  e.  RR )
8987, 88sylan 457 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  +oo )  /\  C  e.  RR )  ->  ( A x e C )  e.  RR )
90 rexr 8893 . . . . . . . . 9  |-  ( ( A x e C )  e.  RR  ->  ( A x e C )  e.  RR* )
91 renemnf 8896 . . . . . . . . 9  |-  ( ( A x e C )  e.  RR  ->  ( A x e C )  =/=  -oo )
92 xaddpnf2 10570 . . . . . . . . 9  |-  ( ( ( A x e C )  e.  RR*  /\  ( A x e C )  =/=  -oo )  ->  (  +oo + e ( A x e C ) )  =  +oo )
9390, 91, 92syl2anc 642 . . . . . . . 8  |-  ( ( A x e C )  e.  RR  ->  ( 
+oo + e ( A x e C ) )  =  +oo )
9489, 93syl 15 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  +oo )  /\  C  e.  RR )  ->  (  +oo + e ( A x e C ) )  =  +oo )
9586, 94eqtr4d 2331 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  +oo )  /\  C  e.  RR )  ->  ( A x e  +oo )  =  (  +oo + e
( A x e C ) ) )
96 simpr 447 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  =  +oo )  ->  B  =  +oo )
9796oveq1d 5889 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  =  +oo )  ->  ( B + e C )  =  (  +oo + e C ) )
98 rexr 8893 . . . . . . . . 9  |-  ( C  e.  RR  ->  C  e.  RR* )
99 renemnf 8896 . . . . . . . . 9  |-  ( C  e.  RR  ->  C  =/=  -oo )
100 xaddpnf2 10570 . . . . . . . . 9  |-  ( ( C  e.  RR*  /\  C  =/=  -oo )  ->  (  +oo + e C )  =  +oo )
10198, 99, 100syl2anc 642 . . . . . . . 8  |-  ( C  e.  RR  ->  (  +oo + e C )  =  +oo )
10297, 101sylan9eq 2348 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  +oo )  /\  C  e.  RR )  ->  ( B + e C )  =  +oo )
103102oveq2d 5890 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  +oo )  /\  C  e.  RR )  ->  ( A x e ( B + e C ) )  =  ( A x e  +oo )
)
104 oveq2 5882 . . . . . . . . 9  |-  ( B  =  +oo  ->  ( A x e B )  =  ( A x e  +oo ) )
105104, 39sylan9eqr 2350 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  =  +oo )  ->  ( A x e B )  =  +oo )
106105adantr 451 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  +oo )  /\  C  e.  RR )  ->  ( A x e B )  =  +oo )
107106oveq1d 5889 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  +oo )  /\  C  e.  RR )  ->  (
( A x e B ) + e
( A x e C ) )  =  (  +oo + e
( A x e C ) ) )
10895, 103, 1073eqtr4d 2338 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  +oo )  /\  C  e.  RR )  ->  ( A x e ( B + e C ) )  =  ( ( A x e B ) + e ( A x e C ) ) )
109 pnfxr 10471 . . . . . . . . 9  |-  +oo  e.  RR*
110 pnfnemnf 10475 . . . . . . . . 9  |-  +oo  =/=  -oo
111 xaddpnf1 10569 . . . . . . . . 9  |-  ( ( 
+oo  e.  RR*  /\  +oo  =/=  -oo )  ->  (  +oo + e  +oo )  =  +oo )
112109, 110, 111mp2an 653 . . . . . . . 8  |-  (  +oo + e  +oo )  = 
+oo
11339, 39oveq12d 5892 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  (
( A x e 
+oo ) + e
( A x e 
+oo ) )  =  (  +oo + e  +oo ) )
114112, 113, 393eqtr4a 2354 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  (
( A x e 
+oo ) + e
( A x e 
+oo ) )  =  ( A x e 
+oo ) )
115114ad2antrr 706 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  +oo )  /\  C  =  +oo )  ->  (
( A x e 
+oo ) + e
( A x e 
+oo ) )  =  ( A x e 
+oo ) )
116104, 58oveqan12d 5893 . . . . . . 7  |-  ( ( B  =  +oo  /\  C  =  +oo )  -> 
( ( A x e B ) + e ( A x e C ) )  =  ( ( A x e  +oo ) + e ( A x e  +oo ) ) )
117116adantll 694 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  +oo )  /\  C  =  +oo )  ->  (
( A x e B ) + e
( A x e C ) )  =  ( ( A x e  +oo ) + e ( A x e  +oo ) ) )
118 oveq12 5883 . . . . . . . . 9  |-  ( ( B  =  +oo  /\  C  =  +oo )  -> 
( B + e C )  =  ( 
+oo + e  +oo ) )
119118, 112syl6eq 2344 . . . . . . . 8  |-  ( ( B  =  +oo  /\  C  =  +oo )  -> 
( B + e C )  =  +oo )
120119oveq2d 5890 . . . . . . 7  |-  ( ( B  =  +oo  /\  C  =  +oo )  -> 
( A x e ( B + e C ) )  =  ( A x e 
+oo ) )
121120adantll 694 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  +oo )  /\  C  =  +oo )  ->  ( A x e ( B + e C ) )  =  ( A x e  +oo )
)
122115, 117, 1213eqtr4rd 2339 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  +oo )  /\  C  =  +oo )  ->  ( A x e ( B + e C ) )  =  ( ( A x e B ) + e ( A x e C ) ) )
123 pnfaddmnf 10573 . . . . . . . 8  |-  (  +oo + e  -oo )  =  0
12439, 63oveq12d 5892 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  (
( A x e 
+oo ) + e
( A x e 
-oo ) )  =  (  +oo + e  -oo ) )
125 xmul01 10603 . . . . . . . . 9  |-  ( A  e.  RR*  ->  ( A x e 0 )  =  0 )
1268, 36, 1253syl 18 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  ( A x e 0 )  =  0 )
127123, 124, 1263eqtr4a 2354 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  (
( A x e 
+oo ) + e
( A x e 
-oo ) )  =  ( A x e 0 ) )
128127ad2antrr 706 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  +oo )  /\  C  =  -oo )  ->  (
( A x e 
+oo ) + e
( A x e 
-oo ) )  =  ( A x e 0 ) )
129104, 79oveqan12d 5893 . . . . . . 7  |-  ( ( B  =  +oo  /\  C  =  -oo )  -> 
( ( A x e B ) + e ( A x e C ) )  =  ( ( A x e  +oo ) + e ( A x e  -oo ) ) )
130129adantll 694 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  +oo )  /\  C  =  -oo )  ->  (
( A x e B ) + e
( A x e C ) )  =  ( ( A x e  +oo ) + e ( A x e  -oo ) ) )
131 oveq12 5883 . . . . . . . . 9  |-  ( ( B  =  +oo  /\  C  =  -oo )  -> 
( B + e C )  =  ( 
+oo + e  -oo ) )
132131, 123syl6eq 2344 . . . . . . . 8  |-  ( ( B  =  +oo  /\  C  =  -oo )  -> 
( B + e C )  =  0 )
133132oveq2d 5890 . . . . . . 7  |-  ( ( B  =  +oo  /\  C  =  -oo )  -> 
( A x e ( B + e C ) )  =  ( A x e 0 ) )
134133adantll 694 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  +oo )  /\  C  =  -oo )  ->  ( A x e ( B + e C ) )  =  ( A x e 0 ) )
135128, 130, 1343eqtr4rd 2339 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  +oo )  /\  C  =  -oo )  ->  ( A x e ( B + e C ) )  =  ( ( A x e B ) + e ( A x e C ) ) )
136108, 122, 1353jaodan 1248 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  +oo )  /\  ( C  e.  RR  \/  C  =  +oo  \/  C  =  -oo ) )  -> 
( A x e ( B + e C ) )  =  ( ( A x e B ) + e ( A x e C ) ) )
13785, 136mpdan 649 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  =  +oo )  ->  ( A x e ( B + e C ) )  =  ( ( A x e B ) + e ( A x e C ) ) )
1386adantr 451 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  =  -oo )  ->  ( C  e.  RR  \/  C  =  +oo  \/  C  =  -oo ) )
13963ad2antrr 706 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  -oo )  /\  C  e.  RR )  ->  ( A x e  -oo )  =  -oo )
1408adantr 451 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  =  -oo )  ->  A  e.  RR )
141140, 88sylan 457 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  -oo )  /\  C  e.  RR )  ->  ( A x e C )  e.  RR )
142 renepnf 8895 . . . . . . . . 9  |-  ( ( A x e C )  e.  RR  ->  ( A x e C )  =/=  +oo )
143 xaddmnf2 10572 . . . . . . . . 9  |-  ( ( ( A x e C )  e.  RR*  /\  ( A x e C )  =/=  +oo )  ->  (  -oo + e ( A x e C ) )  =  -oo )
14490, 142, 143syl2anc 642 . . . . . . . 8  |-  ( ( A x e C )  e.  RR  ->  ( 
-oo + e ( A x e C ) )  =  -oo )
145141, 144syl 15 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  -oo )  /\  C  e.  RR )  ->  (  -oo + e ( A x e C ) )  =  -oo )
146139, 145eqtr4d 2331 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  -oo )  /\  C  e.  RR )  ->  ( A x e  -oo )  =  (  -oo + e
( A x e C ) ) )
147 simpr 447 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  =  -oo )  ->  B  =  -oo )
148147oveq1d 5889 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  =  -oo )  ->  ( B + e C )  =  (  -oo + e C ) )
149 renepnf 8895 . . . . . . . . 9  |-  ( C  e.  RR  ->  C  =/=  +oo )
150 xaddmnf2 10572 . . . . . . . . 9  |-  ( ( C  e.  RR*  /\  C  =/=  +oo )  ->  (  -oo + e C )  =  -oo )
15198, 149, 150syl2anc 642 . . . . . . . 8  |-  ( C  e.  RR  ->  (  -oo + e C )  =  -oo )
152148, 151sylan9eq 2348 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  -oo )  /\  C  e.  RR )  ->  ( B + e C )  =  -oo )
153152oveq2d 5890 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  -oo )  /\  C  e.  RR )  ->  ( A x e ( B + e C ) )  =  ( A x e  -oo )
)
154 oveq2 5882 . . . . . . . . 9  |-  ( B  =  -oo  ->  ( A x e B )  =  ( A x e  -oo ) )
155154, 63sylan9eqr 2350 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  =  -oo )  ->  ( A x e B )  =  -oo )
156155adantr 451 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  -oo )  /\  C  e.  RR )  ->  ( A x e B )  =  -oo )
157156oveq1d 5889 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  -oo )  /\  C  e.  RR )  ->  (
( A x e B ) + e
( A x e C ) )  =  (  -oo + e
( A x e C ) ) )
158146, 153, 1573eqtr4d 2338 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  -oo )  /\  C  e.  RR )  ->  ( A x e ( B + e C ) )  =  ( ( A x e B ) + e ( A x e C ) ) )
15963, 39oveq12d 5892 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  (
( A x e 
-oo ) + e
( A x e 
+oo ) )  =  (  -oo + e  +oo ) )
160 mnfaddpnf 10574 . . . . . . . . 9  |-  (  -oo + e  +oo )  =  0
161159, 160syl6eq 2344 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  (
( A x e 
-oo ) + e
( A x e 
+oo ) )  =  0 )
162126, 161eqtr4d 2331 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  ( A x e 0 )  =  ( ( A x e  -oo ) + e ( A x e  +oo ) ) )
163162ad2antrr 706 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  -oo )  /\  C  =  +oo )  ->  ( A x e 0 )  =  ( ( A x e  -oo ) + e ( A x e  +oo ) ) )
164 oveq12 5883 . . . . . . . . 9  |-  ( ( B  =  -oo  /\  C  =  +oo )  -> 
( B + e C )  =  ( 
-oo + e  +oo ) )
165164, 160syl6eq 2344 . . . . . . . 8  |-  ( ( B  =  -oo  /\  C  =  +oo )  -> 
( B + e C )  =  0 )
166165oveq2d 5890 . . . . . . 7  |-  ( ( B  =  -oo  /\  C  =  +oo )  -> 
( A x e ( B + e C ) )  =  ( A x e 0 ) )
167166adantll 694 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  -oo )  /\  C  =  +oo )  ->  ( A x e ( B + e C ) )  =  ( A x e 0 ) )
168154, 58oveqan12d 5893 . . . . . . 7  |-  ( ( B  =  -oo  /\  C  =  +oo )  -> 
( ( A x e B ) + e ( A x e C ) )  =  ( ( A x e  -oo ) + e ( A x e  +oo ) ) )
169168adantll 694 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  -oo )  /\  C  =  +oo )  ->  (
( A x e B ) + e
( A x e C ) )  =  ( ( A x e  -oo ) + e ( A x e  +oo ) ) )
170163, 167, 1693eqtr4d 2338 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  -oo )  /\  C  =  +oo )  ->  ( A x e ( B + e C ) )  =  ( ( A x e B ) + e ( A x e C ) ) )
171 mnfxr 10472 . . . . . . . . 9  |-  -oo  e.  RR*
172110necomi 2541 . . . . . . . . 9  |-  -oo  =/=  +oo
173 xaddmnf1 10571 . . . . . . . . 9  |-  ( ( 
-oo  e.  RR*  /\  -oo  =/=  +oo )  ->  (  -oo + e  -oo )  =  -oo )
174171, 172, 173mp2an 653 . . . . . . . 8  |-  (  -oo + e  -oo )  = 
-oo
17563, 63oveq12d 5892 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  (
( A x e 
-oo ) + e
( A x e 
-oo ) )  =  (  -oo + e  -oo ) )
176174, 175, 633eqtr4a 2354 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  (
( A x e 
-oo ) + e
( A x e 
-oo ) )  =  ( A x e 
-oo ) )
177176ad2antrr 706 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  -oo )  /\  C  =  -oo )  ->  (
( A x e 
-oo ) + e
( A x e 
-oo ) )  =  ( A x e 
-oo ) )
178154, 79oveqan12d 5893 . . . . . . 7  |-  ( ( B  =  -oo  /\  C  =  -oo )  -> 
( ( A x e B ) + e ( A x e C ) )  =  ( ( A x e  -oo ) + e ( A x e  -oo ) ) )
179178adantll 694 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  -oo )  /\  C  =  -oo )  ->  (
( A x e B ) + e
( A x e C ) )  =  ( ( A x e  -oo ) + e ( A x e  -oo ) ) )
180 oveq12 5883 . . . . . . . . 9  |-  ( ( B  =  -oo  /\  C  =  -oo )  -> 
( B + e C )  =  ( 
-oo + e  -oo ) )
181180, 174syl6eq 2344 . . . . . . . 8  |-  ( ( B  =  -oo  /\  C  =  -oo )  -> 
( B + e C )  =  -oo )
182181oveq2d 5890 . . . . . . 7  |-  ( ( B  =  -oo  /\  C  =  -oo )  -> 
( A x e ( B + e C ) )  =  ( A x e 
-oo ) )
183182adantll 694 . . . . . 6  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  -oo )  /\  C  =  -oo )  ->  ( A x e ( B + e C ) )  =  ( A x e  -oo )
)
184177, 179, 1833eqtr4rd 2339 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  -oo )  /\  C  =  -oo )  ->  ( A x e ( B + e C ) )  =  ( ( A x e B ) + e ( A x e C ) ) )
185158, 170, 1843jaodan 1248 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  A )  /\  B  =  -oo )  /\  ( C  e.  RR  \/  C  =  +oo  \/  C  =  -oo ) )  -> 
( A x e ( B + e C ) )  =  ( ( A x e B ) + e ( A x e C ) ) )
186138, 185mpdan 649 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  B  =  -oo )  ->  ( A x e ( B + e C ) )  =  ( ( A x e B ) + e ( A x e C ) ) )
18784, 137, 1863jaodan 1248 . 2  |-  ( ( ( ( A  e.  RR  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  0  < 
A )  /\  ( B  e.  RR  \/  B  =  +oo  \/  B  =  -oo ) )  -> 
( A x e ( B + e C ) )  =  ( ( A x e B ) + e ( A x e C ) ) )
1883, 187mpdan 649 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  ( A x e ( B + e C ) )  =  ( ( A x e B ) + e ( A x e C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    \/ w3o 933    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   class class class wbr 4039  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753    + caddc 8756    x. cmul 8758    +oocpnf 8880    -oocmnf 8881   RR*cxr 8882    < clt 8883   + ecxad 10466   x ecxmu 10467
This theorem is referenced by:  xadddi  10631
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-xneg 10468  df-xadd 10469  df-xmul 10470
  Copyright terms: Public domain W3C validator