MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmettri Unicode version

Theorem xmettri 17917
Description: Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmettri  |-  ( ( D  e.  ( * Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  -> 
( A D B )  <_  ( ( A D C ) + e ( C D B ) ) )

Proof of Theorem xmettri
StepHypRef Expression
1 simpl 443 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  ->  D  e.  ( * Met `  X ) )
2 simpr3 963 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  ->  C  e.  X )
3 simpr1 961 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  ->  A  e.  X )
4 simpr2 962 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  ->  B  e.  X )
5 xmettri2 17907 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X ) )  -> 
( A D B )  <_  ( ( C D A ) + e ( C D B ) ) )
61, 2, 3, 4, 5syl13anc 1184 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  -> 
( A D B )  <_  ( ( C D A ) + e ( C D B ) ) )
7 xmetsym 17914 . . . 4  |-  ( ( D  e.  ( * Met `  X )  /\  C  e.  X  /\  A  e.  X
)  ->  ( C D A )  =  ( A D C ) )
81, 2, 3, 7syl3anc 1182 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  -> 
( C D A )  =  ( A D C ) )
98oveq1d 5875 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  -> 
( ( C D A ) + e
( C D B ) )  =  ( ( A D C ) + e ( C D B ) ) )
106, 9breqtrd 4049 1  |-  ( ( D  e.  ( * Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  -> 
( A D B )  <_  ( ( A D C ) + e ( C D B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1625    e. wcel 1686   class class class wbr 4025   ` cfv 5257  (class class class)co 5860    <_ cle 8870   + ecxad 10452   * Metcxmt 16371
This theorem is referenced by:  xmettri3  17919  xmetrtri  17921  imasdsf1olem  17939  xmeter  17981  xmstri  18016  metdcnlem  18343  iscau3  18706
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-po 4316  df-so 4317  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-er 6662  df-map 6776  df-en 6866  df-dom 6867  df-sdom 6868  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-xadd 10455  df-xmet 16375
  Copyright terms: Public domain W3C validator