MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnor Structured version   Unicode version

Theorem xnor 1316
Description: Two ways to write XNOR. (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
xnor  |-  ( (
ph 
<->  ps )  <->  -.  ( ph  \/_  ps ) )

Proof of Theorem xnor
StepHypRef Expression
1 df-xor 1315 . 2  |-  ( (
ph  \/_  ps )  <->  -.  ( ph  <->  ps )
)
21con2bii 324 1  |-  ( (
ph 
<->  ps )  <->  -.  ( ph  \/_  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 178    \/_ wxo 1314
This theorem is referenced by:  xorneg1  1321  hadbi  1397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179  df-xor 1315
  Copyright terms: Public domain W3C validator