Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xor Structured version   Unicode version

Theorem xor 862
 Description: Two ways to express "exclusive or." Theorem *5.22 of [WhiteheadRussell] p. 124. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 22-Jan-2013.)
Assertion
Ref Expression
xor

Proof of Theorem xor
StepHypRef Expression
1 iman 414 . . . 4
2 iman 414 . . . 4
31, 2anbi12i 679 . . 3
4 dfbi2 610 . . 3
5 ioran 477 . . 3
63, 4, 53bitr4ri 270 . 2
76con1bii 322 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 177   wo 358   wa 359 This theorem is referenced by:  dfbi3  864  pm5.24  865  4exmid  906  excxor  1318  symdif2  3599  rpnnen2  12817  ist0-3  17401  elsymdif  25660  prtlem90  26697  abnotataxb  27852 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361
 Copyright terms: Public domain W3C validator