MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xp2cda Unicode version

Theorem xp2cda 7774
Description: Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xp2cda  |-  ( A  e.  V  ->  ( A  X.  2o )  =  ( A  +c  A
) )

Proof of Theorem xp2cda
StepHypRef Expression
1 cdaval 7764 . . 3  |-  ( ( A  e.  V  /\  A  e.  V )  ->  ( A  +c  A
)  =  ( ( A  X.  { (/) } )  u.  ( A  X.  { 1o }
) ) )
21anidms 629 . 2  |-  ( A  e.  V  ->  ( A  +c  A )  =  ( ( A  X.  { (/) } )  u.  ( A  X.  { 1o } ) ) )
3 df2o3 6460 . . . . 5  |-  2o  =  { (/) ,  1o }
4 df-pr 3621 . . . . 5  |-  { (/) ,  1o }  =  ( { (/) }  u.  { 1o } )
53, 4eqtri 2278 . . . 4  |-  2o  =  ( { (/) }  u.  { 1o } )
65xpeq2i 4698 . . 3  |-  ( A  X.  2o )  =  ( A  X.  ( { (/) }  u.  { 1o } ) )
7 xpundi 4729 . . 3  |-  ( A  X.  ( { (/) }  u.  { 1o }
) )  =  ( ( A  X.  { (/)
} )  u.  ( A  X.  { 1o }
) )
86, 7eqtri 2278 . 2  |-  ( A  X.  2o )  =  ( ( A  X.  { (/) } )  u.  ( A  X.  { 1o } ) )
92, 8syl6reqr 2309 1  |-  ( A  e.  V  ->  ( A  X.  2o )  =  ( A  +c  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1619    e. wcel 1621    u. cun 3125   (/)c0 3430   {csn 3614   {cpr 3615    X. cxp 4659  (class class class)co 5792   1oc1o 6440   2oc2o 6441    +c ccda 7761
This theorem is referenced by:  pwcda1  7788  unctb  7799  infcdaabs  7800  ackbij1lem5  7818  fin56  7987
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-sbc 2967  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-br 3998  df-opab 4052  df-id 4281  df-suc 4370  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1o 6447  df-2o 6448  df-cda 7762
  Copyright terms: Public domain W3C validator