MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xp2cda Unicode version

Theorem xp2cda 7802
Description: Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xp2cda  |-  ( A  e.  V  ->  ( A  X.  2o )  =  ( A  +c  A
) )

Proof of Theorem xp2cda
StepHypRef Expression
1 cdaval 7792 . . 3  |-  ( ( A  e.  V  /\  A  e.  V )  ->  ( A  +c  A
)  =  ( ( A  X.  { (/) } )  u.  ( A  X.  { 1o }
) ) )
21anidms 626 . 2  |-  ( A  e.  V  ->  ( A  +c  A )  =  ( ( A  X.  { (/) } )  u.  ( A  X.  { 1o } ) ) )
3 df2o3 6488 . . . . 5  |-  2o  =  { (/) ,  1o }
4 df-pr 3648 . . . . 5  |-  { (/) ,  1o }  =  ( { (/) }  u.  { 1o } )
53, 4eqtri 2304 . . . 4  |-  2o  =  ( { (/) }  u.  { 1o } )
65xpeq2i 4709 . . 3  |-  ( A  X.  2o )  =  ( A  X.  ( { (/) }  u.  { 1o } ) )
7 xpundi 4740 . . 3  |-  ( A  X.  ( { (/) }  u.  { 1o }
) )  =  ( ( A  X.  { (/)
} )  u.  ( A  X.  { 1o }
) )
86, 7eqtri 2304 . 2  |-  ( A  X.  2o )  =  ( ( A  X.  { (/) } )  u.  ( A  X.  { 1o } ) )
92, 8syl6reqr 2335 1  |-  ( A  e.  V  ->  ( A  X.  2o )  =  ( A  +c  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1685    u. cun 3151   (/)c0 3456   {csn 3641   {cpr 3642    X. cxp 4686  (class class class)co 5820   1oc1o 6468   2oc2o 6469    +c ccda 7789
This theorem is referenced by:  pwcda1  7816  unctb  7827  infcdaabs  7828  ackbij1lem5  7846  fin56  8015
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-id 4308  df-suc 4397  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1o 6475  df-2o 6476  df-cda 7790
  Copyright terms: Public domain W3C validator