MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcdaen Unicode version

Theorem xpcdaen 8052
Description: Cardinal multiplication distributes over cardinal addition. Theorem 6I(3) of [Enderton] p. 142. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xpcdaen  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  X.  ( B  +c  C ) ) 
~~  ( ( A  X.  B )  +c  ( A  X.  C
) ) )

Proof of Theorem xpcdaen
StepHypRef Expression
1 enrefg 7130 . . . . . 6  |-  ( A  e.  V  ->  A  ~~  A )
213ad2ant1 978 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  A  ~~  A )
3 simp2 958 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  B  e.  W )
4 0ex 4331 . . . . . . 7  |-  (/)  e.  _V
5 xpsneng 7184 . . . . . . 7  |-  ( ( B  e.  W  /\  (/) 
e.  _V )  ->  ( B  X.  { (/) } ) 
~~  B )
63, 4, 5sylancl 644 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( B  X.  { (/)
} )  ~~  B
)
76ensymd 7149 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  B  ~~  ( B  X.  { (/) } ) )
8 xpen 7261 . . . . 5  |-  ( ( A  ~~  A  /\  B  ~~  ( B  X.  { (/) } ) )  ->  ( A  X.  B )  ~~  ( A  X.  ( B  X.  { (/) } ) ) )
92, 7, 8syl2anc 643 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  X.  B
)  ~~  ( A  X.  ( B  X.  { (/)
} ) ) )
10 simp3 959 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  C  e.  X )
11 1on 6722 . . . . . . 7  |-  1o  e.  On
12 xpsneng 7184 . . . . . . 7  |-  ( ( C  e.  X  /\  1o  e.  On )  -> 
( C  X.  { 1o } )  ~~  C
)
1310, 11, 12sylancl 644 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( C  X.  { 1o } )  ~~  C
)
1413ensymd 7149 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  C  ~~  ( C  X.  { 1o }
) )
15 xpen 7261 . . . . 5  |-  ( ( A  ~~  A  /\  C  ~~  ( C  X.  { 1o } ) )  ->  ( A  X.  C )  ~~  ( A  X.  ( C  X.  { 1o } ) ) )
162, 14, 15syl2anc 643 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  X.  C
)  ~~  ( A  X.  ( C  X.  { 1o } ) ) )
17 xp01disj 6731 . . . . . . 7  |-  ( ( B  X.  { (/) } )  i^i  ( C  X.  { 1o }
) )  =  (/)
1817xpeq2i 4890 . . . . . 6  |-  ( A  X.  ( ( B  X.  { (/) } )  i^i  ( C  X.  { 1o } ) ) )  =  ( A  X.  (/) )
19 xpindi 4999 . . . . . 6  |-  ( A  X.  ( ( B  X.  { (/) } )  i^i  ( C  X.  { 1o } ) ) )  =  ( ( A  X.  ( B  X.  { (/) } ) )  i^i  ( A  X.  ( C  X.  { 1o } ) ) )
20 xp0 5282 . . . . . 6  |-  ( A  X.  (/) )  =  (/)
2118, 19, 203eqtr3i 2463 . . . . 5  |-  ( ( A  X.  ( B  X.  { (/) } ) )  i^i  ( A  X.  ( C  X.  { 1o } ) ) )  =  (/)
2221a1i 11 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A  X.  ( B  X.  { (/) } ) )  i^i  ( A  X.  ( C  X.  { 1o } ) ) )  =  (/) )
23 cdaenun 8043 . . . 4  |-  ( ( ( A  X.  B
)  ~~  ( A  X.  ( B  X.  { (/)
} ) )  /\  ( A  X.  C
)  ~~  ( A  X.  ( C  X.  { 1o } ) )  /\  ( ( A  X.  ( B  X.  { (/) } ) )  i^i  ( A  X.  ( C  X.  { 1o } ) ) )  =  (/) )  -> 
( ( A  X.  B )  +c  ( A  X.  C ) ) 
~~  ( ( A  X.  ( B  X.  { (/) } ) )  u.  ( A  X.  ( C  X.  { 1o } ) ) ) )
249, 16, 22, 23syl3anc 1184 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A  X.  B )  +c  ( A  X.  C ) ) 
~~  ( ( A  X.  ( B  X.  { (/) } ) )  u.  ( A  X.  ( C  X.  { 1o } ) ) ) )
25 cdaval 8039 . . . . . 6  |-  ( ( B  e.  W  /\  C  e.  X )  ->  ( B  +c  C
)  =  ( ( B  X.  { (/) } )  u.  ( C  X.  { 1o }
) ) )
26253adant1 975 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( B  +c  C
)  =  ( ( B  X.  { (/) } )  u.  ( C  X.  { 1o }
) ) )
2726xpeq2d 4893 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  X.  ( B  +c  C ) )  =  ( A  X.  ( ( B  X.  { (/) } )  u.  ( C  X.  { 1o } ) ) ) )
28 xpundi 4921 . . . 4  |-  ( A  X.  ( ( B  X.  { (/) } )  u.  ( C  X.  { 1o } ) ) )  =  ( ( A  X.  ( B  X.  { (/) } ) )  u.  ( A  X.  ( C  X.  { 1o } ) ) )
2927, 28syl6eq 2483 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  X.  ( B  +c  C ) )  =  ( ( A  X.  ( B  X.  { (/) } ) )  u.  ( A  X.  ( C  X.  { 1o } ) ) ) )
3024, 29breqtrrd 4230 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A  X.  B )  +c  ( A  X.  C ) ) 
~~  ( A  X.  ( B  +c  C
) ) )
3130ensymd 7149 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  X.  ( B  +c  C ) ) 
~~  ( ( A  X.  B )  +c  ( A  X.  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1652    e. wcel 1725   _Vcvv 2948    u. cun 3310    i^i cin 3311   (/)c0 3620   {csn 3806   class class class wbr 4204   Oncon0 4573    X. cxp 4867  (class class class)co 6072   1oc1o 6708    ~~ cen 7097    +c ccda 8036
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-suc 4579  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-1o 6715  df-er 6896  df-en 7101  df-dom 7102  df-cda 8037
  Copyright terms: Public domain W3C validator