MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcdaen Unicode version

Theorem xpcdaen 7804
Description: Cardinal multiplication distributes over cardinal addition. Theorem 6I(3) of [Enderton] p. 142. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xpcdaen  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  X.  ( B  +c  C ) ) 
~~  ( ( A  X.  B )  +c  ( A  X.  C
) ) )

Proof of Theorem xpcdaen
StepHypRef Expression
1 enrefg 6888 . . . . . 6  |-  ( A  e.  V  ->  A  ~~  A )
213ad2ant1 978 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  A  ~~  A )
3 simp2 958 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  B  e.  W )
4 0ex 4151 . . . . . . 7  |-  (/)  e.  _V
5 xpsneng 6942 . . . . . . 7  |-  ( ( B  e.  W  /\  (/) 
e.  _V )  ->  ( B  X.  { (/) } ) 
~~  B )
63, 4, 5sylancl 645 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( B  X.  { (/)
} )  ~~  B
)
7 ensym 6905 . . . . . 6  |-  ( ( B  X.  { (/) } )  ~~  B  ->  B  ~~  ( B  X.  { (/) } ) )
86, 7syl 17 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  B  ~~  ( B  X.  { (/) } ) )
9 xpen 7019 . . . . 5  |-  ( ( A  ~~  A  /\  B  ~~  ( B  X.  { (/) } ) )  ->  ( A  X.  B )  ~~  ( A  X.  ( B  X.  { (/) } ) ) )
102, 8, 9syl2anc 644 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  X.  B
)  ~~  ( A  X.  ( B  X.  { (/)
} ) ) )
11 simp3 959 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  C  e.  X )
12 1on 6481 . . . . . . 7  |-  1o  e.  On
13 xpsneng 6942 . . . . . . 7  |-  ( ( C  e.  X  /\  1o  e.  On )  -> 
( C  X.  { 1o } )  ~~  C
)
1411, 12, 13sylancl 645 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( C  X.  { 1o } )  ~~  C
)
15 ensym 6905 . . . . . 6  |-  ( ( C  X.  { 1o } )  ~~  C  ->  C  ~~  ( C  X.  { 1o }
) )
1614, 15syl 17 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  C  ~~  ( C  X.  { 1o }
) )
17 xpen 7019 . . . . 5  |-  ( ( A  ~~  A  /\  C  ~~  ( C  X.  { 1o } ) )  ->  ( A  X.  C )  ~~  ( A  X.  ( C  X.  { 1o } ) ) )
182, 16, 17syl2anc 644 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  X.  C
)  ~~  ( A  X.  ( C  X.  { 1o } ) ) )
19 xp01disj 6490 . . . . . . 7  |-  ( ( B  X.  { (/) } )  i^i  ( C  X.  { 1o }
) )  =  (/)
2019xpeq2i 4709 . . . . . 6  |-  ( A  X.  ( ( B  X.  { (/) } )  i^i  ( C  X.  { 1o } ) ) )  =  ( A  X.  (/) )
21 xpindi 4818 . . . . . 6  |-  ( A  X.  ( ( B  X.  { (/) } )  i^i  ( C  X.  { 1o } ) ) )  =  ( ( A  X.  ( B  X.  { (/) } ) )  i^i  ( A  X.  ( C  X.  { 1o } ) ) )
22 xp0 5097 . . . . . 6  |-  ( A  X.  (/) )  =  (/)
2320, 21, 223eqtr3i 2312 . . . . 5  |-  ( ( A  X.  ( B  X.  { (/) } ) )  i^i  ( A  X.  ( C  X.  { 1o } ) ) )  =  (/)
2423a1i 12 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A  X.  ( B  X.  { (/) } ) )  i^i  ( A  X.  ( C  X.  { 1o } ) ) )  =  (/) )
25 cdaenun 7795 . . . 4  |-  ( ( ( A  X.  B
)  ~~  ( A  X.  ( B  X.  { (/)
} ) )  /\  ( A  X.  C
)  ~~  ( A  X.  ( C  X.  { 1o } ) )  /\  ( ( A  X.  ( B  X.  { (/) } ) )  i^i  ( A  X.  ( C  X.  { 1o } ) ) )  =  (/) )  -> 
( ( A  X.  B )  +c  ( A  X.  C ) ) 
~~  ( ( A  X.  ( B  X.  { (/) } ) )  u.  ( A  X.  ( C  X.  { 1o } ) ) ) )
2610, 18, 24, 25syl3anc 1184 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A  X.  B )  +c  ( A  X.  C ) ) 
~~  ( ( A  X.  ( B  X.  { (/) } ) )  u.  ( A  X.  ( C  X.  { 1o } ) ) ) )
27 cdaval 7791 . . . . . 6  |-  ( ( B  e.  W  /\  C  e.  X )  ->  ( B  +c  C
)  =  ( ( B  X.  { (/) } )  u.  ( C  X.  { 1o }
) ) )
28273adant1 975 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( B  +c  C
)  =  ( ( B  X.  { (/) } )  u.  ( C  X.  { 1o }
) ) )
2928xpeq2d 4712 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  X.  ( B  +c  C ) )  =  ( A  X.  ( ( B  X.  { (/) } )  u.  ( C  X.  { 1o } ) ) ) )
30 xpundi 4740 . . . 4  |-  ( A  X.  ( ( B  X.  { (/) } )  u.  ( C  X.  { 1o } ) ) )  =  ( ( A  X.  ( B  X.  { (/) } ) )  u.  ( A  X.  ( C  X.  { 1o } ) ) )
3129, 30syl6eq 2332 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  X.  ( B  +c  C ) )  =  ( ( A  X.  ( B  X.  { (/) } ) )  u.  ( A  X.  ( C  X.  { 1o } ) ) ) )
3226, 31breqtrrd 4050 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A  X.  B )  +c  ( A  X.  C ) ) 
~~  ( A  X.  ( B  +c  C
) ) )
33 ensym 6905 . 2  |-  ( ( ( A  X.  B
)  +c  ( A  X.  C ) ) 
~~  ( A  X.  ( B  +c  C
) )  ->  ( A  X.  ( B  +c  C ) )  ~~  ( ( A  X.  B )  +c  ( A  X.  C ) ) )
3432, 33syl 17 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  X.  ( B  +c  C ) ) 
~~  ( ( A  X.  B )  +c  ( A  X.  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ w3a 936    = wceq 1624    e. wcel 1685   _Vcvv 2789    u. cun 3151    i^i cin 3152   (/)c0 3456   {csn 3641   class class class wbr 4024   Oncon0 4391    X. cxp 4686  (class class class)co 5819   1oc1o 6467    ~~ cen 6855    +c ccda 7788
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-suc 4397  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-1o 6474  df-er 6655  df-en 6859  df-dom 6860  df-cda 7789
  Copyright terms: Public domain W3C validator