MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcomeng Unicode version

Theorem xpcomeng 6956
Description: Commutative law for equinumerosity of cross product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 27-Mar-2006.)
Assertion
Ref Expression
xpcomeng  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  B
)  ~~  ( B  X.  A ) )

Proof of Theorem xpcomeng
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 4705 . . 3  |-  ( x  =  A  ->  (
x  X.  y )  =  ( A  X.  y ) )
2 xpeq2 4706 . . 3  |-  ( x  =  A  ->  (
y  X.  x )  =  ( y  X.  A ) )
31, 2breq12d 4038 . 2  |-  ( x  =  A  ->  (
( x  X.  y
)  ~~  ( y  X.  x )  <->  ( A  X.  y )  ~~  (
y  X.  A ) ) )
4 xpeq2 4706 . . 3  |-  ( y  =  B  ->  ( A  X.  y )  =  ( A  X.  B
) )
5 xpeq1 4705 . . 3  |-  ( y  =  B  ->  (
y  X.  A )  =  ( B  X.  A ) )
64, 5breq12d 4038 . 2  |-  ( y  =  B  ->  (
( A  X.  y
)  ~~  ( y  X.  A )  <->  ( A  X.  B )  ~~  ( B  X.  A ) ) )
7 vex 2793 . . 3  |-  x  e. 
_V
8 vex 2793 . . 3  |-  y  e. 
_V
97, 8xpcomen 6955 . 2  |-  ( x  X.  y )  ~~  ( y  X.  x
)
103, 6, 9vtocl2g 2849 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  B
)  ~~  ( B  X.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686   class class class wbr 4025    X. cxp 4689    ~~ cen 6862
This theorem is referenced by:  xpsnen2g  6957  xpdom1g  6961  omxpen  6966  xpfir  7087  infxp  7843  infmap2  7846
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-1st 6124  df-2nd 6125  df-en 6866
  Copyright terms: Public domain W3C validator