MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpdom1 Unicode version

Theorem xpdom1 6956
Description: Dominance law for cross product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Mar-2006.)
Hypothesis
Ref Expression
xpdom1.2  |-  C  e. 
_V
Assertion
Ref Expression
xpdom1  |-  ( A  ~<_  B  ->  ( A  X.  C )  ~<_  ( B  X.  C ) )

Proof of Theorem xpdom1
StepHypRef Expression
1 xpdom1.2 . 2  |-  C  e. 
_V
2 xpdom1g 6954 . 2  |-  ( ( C  e.  _V  /\  A  ~<_  B )  -> 
( A  X.  C
)  ~<_  ( B  X.  C ) )
31, 2mpan 654 1  |-  ( A  ~<_  B  ->  ( A  X.  C )  ~<_  ( B  X.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    e. wcel 1688   _Vcvv 2789   class class class wbr 4024    X. cxp 4686    ~<_ cdom 6856
This theorem is referenced by:  cdadom1  7807  uniimadom  8161  unirnfdomd  8184  alephreg  8199  inar1  8392  2ndcctbss  17175  tx1stc  17338  tx2ndc  17339  mbfimaopnlem  19004
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-13 1690  ax-14 1692  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1534  df-nf 1537  df-sb 1636  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-1st 6083  df-2nd 6084  df-en 6859  df-dom 6860
  Copyright terms: Public domain W3C validator