MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpdom1g Unicode version

Theorem xpdom1g 6975
Description: Dominance law for cross product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 25-Mar-2006.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
xpdom1g  |-  ( ( C  e.  V  /\  A  ~<_  B )  -> 
( A  X.  C
)  ~<_  ( B  X.  C ) )

Proof of Theorem xpdom1g
StepHypRef Expression
1 reldom 6885 . . . 4  |-  Rel  ~<_
21brrelexi 4745 . . 3  |-  ( A  ~<_  B  ->  A  e.  _V )
3 xpcomeng 6970 . . . 4  |-  ( ( A  e.  _V  /\  C  e.  V )  ->  ( A  X.  C
)  ~~  ( C  X.  A ) )
43ancoms 439 . . 3  |-  ( ( C  e.  V  /\  A  e.  _V )  ->  ( A  X.  C
)  ~~  ( C  X.  A ) )
52, 4sylan2 460 . 2  |-  ( ( C  e.  V  /\  A  ~<_  B )  -> 
( A  X.  C
)  ~~  ( C  X.  A ) )
6 xpdom2g 6974 . . 3  |-  ( ( C  e.  V  /\  A  ~<_  B )  -> 
( C  X.  A
)  ~<_  ( C  X.  B ) )
71brrelex2i 4746 . . . 4  |-  ( A  ~<_  B  ->  B  e.  _V )
8 xpcomeng 6970 . . . 4  |-  ( ( C  e.  V  /\  B  e.  _V )  ->  ( C  X.  B
)  ~~  ( B  X.  C ) )
97, 8sylan2 460 . . 3  |-  ( ( C  e.  V  /\  A  ~<_  B )  -> 
( C  X.  B
)  ~~  ( B  X.  C ) )
10 domentr 6936 . . 3  |-  ( ( ( C  X.  A
)  ~<_  ( C  X.  B )  /\  ( C  X.  B )  ~~  ( B  X.  C
) )  ->  ( C  X.  A )  ~<_  ( B  X.  C ) )
116, 9, 10syl2anc 642 . 2  |-  ( ( C  e.  V  /\  A  ~<_  B )  -> 
( C  X.  A
)  ~<_  ( B  X.  C ) )
12 endomtr 6935 . 2  |-  ( ( ( A  X.  C
)  ~~  ( C  X.  A )  /\  ( C  X.  A )  ~<_  ( B  X.  C ) )  ->  ( A  X.  C )  ~<_  ( B  X.  C ) )
135, 11, 12syl2anc 642 1  |-  ( ( C  e.  V  /\  A  ~<_  B )  -> 
( A  X.  C
)  ~<_  ( B  X.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1696   _Vcvv 2801   class class class wbr 4039    X. cxp 4703    ~~ cen 6876    ~<_ cdom 6877
This theorem is referenced by:  xpdom1  6977  xpen  7040  infpwfien  7705  iunctb  8212  canthp1lem1  8290  gchxpidm  8307  xpct  23353  fnct  23356
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1st 6138  df-2nd 6139  df-en 6880  df-dom 6881
  Copyright terms: Public domain W3C validator