MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpdom1g Unicode version

Theorem xpdom1g 6955
Description: Dominance law for cross product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 25-Mar-2006.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
xpdom1g  |-  ( ( C  e.  V  /\  A  ~<_  B )  -> 
( A  X.  C
)  ~<_  ( B  X.  C ) )

Proof of Theorem xpdom1g
StepHypRef Expression
1 reldom 6865 . . . 4  |-  Rel  ~<_
21brrelexi 4729 . . 3  |-  ( A  ~<_  B  ->  A  e.  _V )
3 xpcomeng 6950 . . . 4  |-  ( ( A  e.  _V  /\  C  e.  V )  ->  ( A  X.  C
)  ~~  ( C  X.  A ) )
43ancoms 441 . . 3  |-  ( ( C  e.  V  /\  A  e.  _V )  ->  ( A  X.  C
)  ~~  ( C  X.  A ) )
52, 4sylan2 462 . 2  |-  ( ( C  e.  V  /\  A  ~<_  B )  -> 
( A  X.  C
)  ~~  ( C  X.  A ) )
6 xpdom2g 6954 . . 3  |-  ( ( C  e.  V  /\  A  ~<_  B )  -> 
( C  X.  A
)  ~<_  ( C  X.  B ) )
71brrelex2i 4730 . . . 4  |-  ( A  ~<_  B  ->  B  e.  _V )
8 xpcomeng 6950 . . . 4  |-  ( ( C  e.  V  /\  B  e.  _V )  ->  ( C  X.  B
)  ~~  ( B  X.  C ) )
97, 8sylan2 462 . . 3  |-  ( ( C  e.  V  /\  A  ~<_  B )  -> 
( C  X.  B
)  ~~  ( B  X.  C ) )
10 domentr 6916 . . 3  |-  ( ( ( C  X.  A
)  ~<_  ( C  X.  B )  /\  ( C  X.  B )  ~~  ( B  X.  C
) )  ->  ( C  X.  A )  ~<_  ( B  X.  C ) )
116, 9, 10syl2anc 644 . 2  |-  ( ( C  e.  V  /\  A  ~<_  B )  -> 
( C  X.  A
)  ~<_  ( B  X.  C ) )
12 endomtr 6915 . 2  |-  ( ( ( A  X.  C
)  ~~  ( C  X.  A )  /\  ( C  X.  A )  ~<_  ( B  X.  C ) )  ->  ( A  X.  C )  ~<_  ( B  X.  C ) )
135, 11, 12syl2anc 644 1  |-  ( ( C  e.  V  /\  A  ~<_  B )  -> 
( A  X.  C
)  ~<_  ( B  X.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    e. wcel 1685   _Vcvv 2790   class class class wbr 4025    X. cxp 4687    ~~ cen 6856    ~<_ cdom 6857
This theorem is referenced by:  xpdom1  6957  xpen  7020  infpwfien  7685  iunctb  8192  canthp1lem1  8270  gchxpidm  8287
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-1st 6084  df-2nd 6085  df-en 6860  df-dom 6861
  Copyright terms: Public domain W3C validator