MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpindi Unicode version

Theorem xpindi 4835
Description: Distributive law for cross product over intersection. Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.)
Assertion
Ref Expression
xpindi  |-  ( A  X.  ( B  i^i  C ) )  =  ( ( A  X.  B
)  i^i  ( A  X.  C ) )

Proof of Theorem xpindi
StepHypRef Expression
1 inxp 4834 . 2  |-  ( ( A  X.  B )  i^i  ( A  X.  C ) )  =  ( ( A  i^i  A )  X.  ( B  i^i  C ) )
2 inidm 3391 . . 3  |-  ( A  i^i  A )  =  A
32xpeq1i 4725 . 2  |-  ( ( A  i^i  A )  X.  ( B  i^i  C ) )  =  ( A  X.  ( B  i^i  C ) )
41, 3eqtr2i 2317 1  |-  ( A  X.  ( B  i^i  C ) )  =  ( ( A  X.  B
)  i^i  ( A  X.  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1632    i^i cin 3164    X. cxp 4703
This theorem is referenced by:  xpriindi  4838  xpcdaen  7825  fpwwe2lem13  8280  txhaus  17357  selsubf  26093
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-opab 4094  df-xp 4711  df-rel 4712
  Copyright terms: Public domain W3C validator