MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpindi Unicode version

Theorem xpindi 4818
Description: Distributive law for cross product over intersection. Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.)
Assertion
Ref Expression
xpindi  |-  ( A  X.  ( B  i^i  C ) )  =  ( ( A  X.  B
)  i^i  ( A  X.  C ) )

Proof of Theorem xpindi
StepHypRef Expression
1 inxp 4817 . 2  |-  ( ( A  X.  B )  i^i  ( A  X.  C ) )  =  ( ( A  i^i  A )  X.  ( B  i^i  C ) )
2 inidm 3379 . . 3  |-  ( A  i^i  A )  =  A
32xpeq1i 4708 . 2  |-  ( ( A  i^i  A )  X.  ( B  i^i  C ) )  =  ( A  X.  ( B  i^i  C ) )
41, 3eqtr2i 2305 1  |-  ( A  X.  ( B  i^i  C ) )  =  ( ( A  X.  B
)  i^i  ( A  X.  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1628    i^i cin 3152    X. cxp 4686
This theorem is referenced by:  xpriindi  4821  xpcdaen  7804  fpwwe2lem13  8259  txhaus  17335  selsubf  25389
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-14 1692  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1534  df-nf 1537  df-sb 1636  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-op 3650  df-opab 4079  df-xp 4694  df-rel 4695
  Copyright terms: Public domain W3C validator