MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpmapen Unicode version

Theorem xpmapen 7024
Description: Equinumerosity law for set exponentiation of a cross product. Exercise 4.47 of [Mendelson] p. 255. (Contributed by NM, 23-Feb-2004.) (Proof shortened by Mario Carneiro, 16-Nov-2014.)
Hypotheses
Ref Expression
xpmapen.1  |-  A  e. 
_V
xpmapen.2  |-  B  e. 
_V
xpmapen.3  |-  C  e. 
_V
Assertion
Ref Expression
xpmapen  |-  ( ( A  X.  B )  ^m  C )  ~~  ( ( A  ^m  C )  X.  ( B  ^m  C ) )
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.

Proof of Theorem xpmapen
StepHypRef Expression
1 xpmapen.1 . 2  |-  A  e. 
_V
2 xpmapen.2 . 2  |-  B  e. 
_V
3 xpmapen.3 . 2  |-  C  e. 
_V
4 fveq2 5485 . . . 4  |-  ( w  =  z  ->  (
x `  w )  =  ( x `  z ) )
54fveq2d 5489 . . 3  |-  ( w  =  z  ->  ( 1st `  ( x `  w ) )  =  ( 1st `  (
x `  z )
) )
65cbvmptv 4112 . 2  |-  ( w  e.  C  |->  ( 1st `  ( x `  w
) ) )  =  ( z  e.  C  |->  ( 1st `  (
x `  z )
) )
74fveq2d 5489 . . 3  |-  ( w  =  z  ->  ( 2nd `  ( x `  w ) )  =  ( 2nd `  (
x `  z )
) )
87cbvmptv 4112 . 2  |-  ( w  e.  C  |->  ( 2nd `  ( x `  w
) ) )  =  ( z  e.  C  |->  ( 2nd `  (
x `  z )
) )
9 fveq2 5485 . . . 4  |-  ( w  =  z  ->  (
( 1st `  y
) `  w )  =  ( ( 1st `  y ) `  z
) )
10 fveq2 5485 . . . 4  |-  ( w  =  z  ->  (
( 2nd `  y
) `  w )  =  ( ( 2nd `  y ) `  z
) )
119, 10opeq12d 3805 . . 3  |-  ( w  =  z  ->  <. (
( 1st `  y
) `  w ) ,  ( ( 2nd `  y ) `  w
) >.  =  <. (
( 1st `  y
) `  z ) ,  ( ( 2nd `  y ) `  z
) >. )
1211cbvmptv 4112 . 2  |-  ( w  e.  C  |->  <. (
( 1st `  y
) `  w ) ,  ( ( 2nd `  y ) `  w
) >. )  =  ( z  e.  C  |->  <.
( ( 1st `  y
) `  z ) ,  ( ( 2nd `  y ) `  z
) >. )
131, 2, 3, 6, 8, 12xpmapenlem 7023 1  |-  ( ( A  X.  B )  ^m  C )  ~~  ( ( A  ^m  C )  X.  ( B  ^m  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1624    e. wcel 1685   _Vcvv 2789   <.cop 3644   class class class wbr 4024    e. cmpt 4078    X. cxp 4686   ` cfv 5221  (class class class)co 5819   1stc1st 6081   2ndc2nd 6082    ^m cmap 6767    ~~ cen 6855
This theorem is referenced by:  rexpen  12500
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-map 6769  df-en 6859
  Copyright terms: Public domain W3C validator