MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsnen Unicode version

Theorem xpsnen 6946
Description: A set is equinumerous to its cross-product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 4-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
Hypotheses
Ref Expression
xpsnen.1  |-  A  e. 
_V
xpsnen.2  |-  B  e. 
_V
Assertion
Ref Expression
xpsnen  |-  ( A  X.  { B }
)  ~~  A

Proof of Theorem xpsnen
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsnen.1 . . 3  |-  A  e. 
_V
2 snex 4216 . . 3  |-  { B }  e.  _V
31, 2xpex 4801 . 2  |-  ( A  X.  { B }
)  e.  _V
4 elxp 4706 . . 3  |-  ( y  e.  ( A  X.  { B } )  <->  E. x E. z ( y  = 
<. x ,  z >.  /\  ( x  e.  A  /\  z  e.  { B } ) ) )
5 inteq 3865 . . . . . . . 8  |-  ( y  =  <. x ,  z
>.  ->  |^| y  =  |^| <.
x ,  z >.
)
65inteqd 3867 . . . . . . 7  |-  ( y  =  <. x ,  z
>.  ->  |^| |^| y  =  |^| |^|
<. x ,  z >.
)
7 vex 2791 . . . . . . . 8  |-  x  e. 
_V
8 vex 2791 . . . . . . . 8  |-  z  e. 
_V
97, 8op1stb 4569 . . . . . . 7  |-  |^| |^| <. x ,  z >.  =  x
106, 9syl6eq 2331 . . . . . 6  |-  ( y  =  <. x ,  z
>.  ->  |^| |^| y  =  x )
1110, 7syl6eqel 2371 . . . . 5  |-  ( y  =  <. x ,  z
>.  ->  |^| |^| y  e.  _V )
1211adantr 451 . . . 4  |-  ( ( y  =  <. x ,  z >.  /\  (
x  e.  A  /\  z  e.  { B } ) )  ->  |^| |^| y  e.  _V )
1312exlimivv 1667 . . 3  |-  ( E. x E. z ( y  =  <. x ,  z >.  /\  (
x  e.  A  /\  z  e.  { B } ) )  ->  |^| |^| y  e.  _V )
144, 13sylbi 187 . 2  |-  ( y  e.  ( A  X.  { B } )  ->  |^| |^| y  e.  _V )
15 opex 4237 . . 3  |-  <. x ,  B >.  e.  _V
1615a1i 10 . 2  |-  ( x  e.  A  ->  <. x ,  B >.  e.  _V )
17 eleq1 2343 . . . . . 6  |-  ( x  =  |^| |^| y  ->  ( x  e.  _V  <->  |^|
|^| y  e.  _V ) )
187, 17mpbii 202 . . . . 5  |-  ( x  =  |^| |^| y  ->  |^| |^| y  e.  _V )
19 ancom 437 . . . . . . . . . . 11  |-  ( ( ( y  =  <. x ,  z >.  /\  x  e.  A )  /\  z  e.  { B } )  <-> 
( z  e.  { B }  /\  (
y  =  <. x ,  z >.  /\  x  e.  A ) ) )
20 anass 630 . . . . . . . . . . 11  |-  ( ( ( y  =  <. x ,  z >.  /\  x  e.  A )  /\  z  e.  { B } )  <-> 
( y  =  <. x ,  z >.  /\  (
x  e.  A  /\  z  e.  { B } ) ) )
21 elsn 3655 . . . . . . . . . . . 12  |-  ( z  e.  { B }  <->  z  =  B )
2221anbi1i 676 . . . . . . . . . . 11  |-  ( ( z  e.  { B }  /\  ( y  = 
<. x ,  z >.  /\  x  e.  A
) )  <->  ( z  =  B  /\  (
y  =  <. x ,  z >.  /\  x  e.  A ) ) )
2319, 20, 223bitr3i 266 . . . . . . . . . 10  |-  ( ( y  =  <. x ,  z >.  /\  (
x  e.  A  /\  z  e.  { B } ) )  <->  ( z  =  B  /\  (
y  =  <. x ,  z >.  /\  x  e.  A ) ) )
2423exbii 1569 . . . . . . . . 9  |-  ( E. z ( y  = 
<. x ,  z >.  /\  ( x  e.  A  /\  z  e.  { B } ) )  <->  E. z
( z  =  B  /\  ( y  = 
<. x ,  z >.  /\  x  e.  A
) ) )
25 xpsnen.2 . . . . . . . . . 10  |-  B  e. 
_V
26 opeq2 3797 . . . . . . . . . . . 12  |-  ( z  =  B  ->  <. x ,  z >.  =  <. x ,  B >. )
2726eqeq2d 2294 . . . . . . . . . . 11  |-  ( z  =  B  ->  (
y  =  <. x ,  z >.  <->  y  =  <. x ,  B >. ) )
2827anbi1d 685 . . . . . . . . . 10  |-  ( z  =  B  ->  (
( y  =  <. x ,  z >.  /\  x  e.  A )  <->  ( y  =  <. x ,  B >.  /\  x  e.  A
) ) )
2925, 28ceqsexv 2823 . . . . . . . . 9  |-  ( E. z ( z  =  B  /\  ( y  =  <. x ,  z
>.  /\  x  e.  A
) )  <->  ( y  =  <. x ,  B >.  /\  x  e.  A
) )
30 inteq 3865 . . . . . . . . . . . . . 14  |-  ( y  =  <. x ,  B >.  ->  |^| y  =  |^| <.
x ,  B >. )
3130inteqd 3867 . . . . . . . . . . . . 13  |-  ( y  =  <. x ,  B >.  ->  |^| |^| y  =  |^| |^|
<. x ,  B >. )
327, 25op1stb 4569 . . . . . . . . . . . . 13  |-  |^| |^| <. x ,  B >.  =  x
3331, 32syl6req 2332 . . . . . . . . . . . 12  |-  ( y  =  <. x ,  B >.  ->  x  =  |^| |^| y )
3433pm4.71ri 614 . . . . . . . . . . 11  |-  ( y  =  <. x ,  B >.  <-> 
( x  =  |^| |^| y  /\  y  = 
<. x ,  B >. ) )
3534anbi1i 676 . . . . . . . . . 10  |-  ( ( y  =  <. x ,  B >.  /\  x  e.  A )  <->  ( (
x  =  |^| |^| y  /\  y  =  <. x ,  B >. )  /\  x  e.  A
) )
36 anass 630 . . . . . . . . . 10  |-  ( ( ( x  =  |^| |^| y  /\  y  = 
<. x ,  B >. )  /\  x  e.  A
)  <->  ( x  = 
|^| |^| y  /\  (
y  =  <. x ,  B >.  /\  x  e.  A ) ) )
3735, 36bitri 240 . . . . . . . . 9  |-  ( ( y  =  <. x ,  B >.  /\  x  e.  A )  <->  ( x  =  |^| |^| y  /\  (
y  =  <. x ,  B >.  /\  x  e.  A ) ) )
3824, 29, 373bitri 262 . . . . . . . 8  |-  ( E. z ( y  = 
<. x ,  z >.  /\  ( x  e.  A  /\  z  e.  { B } ) )  <->  ( x  =  |^| |^| y  /\  (
y  =  <. x ,  B >.  /\  x  e.  A ) ) )
3938exbii 1569 . . . . . . 7  |-  ( E. x E. z ( y  =  <. x ,  z >.  /\  (
x  e.  A  /\  z  e.  { B } ) )  <->  E. x
( x  =  |^| |^| y  /\  ( y  =  <. x ,  B >.  /\  x  e.  A
) ) )
404, 39bitri 240 . . . . . 6  |-  ( y  e.  ( A  X.  { B } )  <->  E. x
( x  =  |^| |^| y  /\  ( y  =  <. x ,  B >.  /\  x  e.  A
) ) )
41 opeq1 3796 . . . . . . . . 9  |-  ( x  =  |^| |^| y  -> 
<. x ,  B >.  = 
<. |^| |^| y ,  B >. )
4241eqeq2d 2294 . . . . . . . 8  |-  ( x  =  |^| |^| y  ->  ( y  =  <. x ,  B >.  <->  y  =  <. |^| |^| y ,  B >. ) )
43 eleq1 2343 . . . . . . . 8  |-  ( x  =  |^| |^| y  ->  ( x  e.  A  <->  |^|
|^| y  e.  A
) )
4442, 43anbi12d 691 . . . . . . 7  |-  ( x  =  |^| |^| y  ->  ( ( y  = 
<. x ,  B >.  /\  x  e.  A )  <-> 
( y  =  <. |^|
|^| y ,  B >.  /\  |^| |^| y  e.  A
) ) )
4544ceqsexgv 2900 . . . . . 6  |-  ( |^| |^| y  e.  _V  ->  ( E. x ( x  =  |^| |^| y  /\  ( y  =  <. x ,  B >.  /\  x  e.  A ) )  <->  ( y  =  <. |^| |^| y ,  B >.  /\  |^| |^| y  e.  A
) ) )
4640, 45syl5bb 248 . . . . 5  |-  ( |^| |^| y  e.  _V  ->  ( y  e.  ( A  X.  { B }
)  <->  ( y  = 
<. |^| |^| y ,  B >.  /\  |^| |^| y  e.  A
) ) )
4718, 46syl 15 . . . 4  |-  ( x  =  |^| |^| y  ->  ( y  e.  ( A  X.  { B } )  <->  ( y  =  <. |^| |^| y ,  B >.  /\  |^| |^| y  e.  A
) ) )
4847pm5.32ri 619 . . 3  |-  ( ( y  e.  ( A  X.  { B }
)  /\  x  =  |^| |^| y )  <->  ( (
y  =  <. |^| |^| y ,  B >.  /\  |^| |^| y  e.  A )  /\  x  =  |^| |^| y ) )
4933adantr 451 . . . . 5  |-  ( ( y  =  <. x ,  B >.  /\  x  e.  A )  ->  x  =  |^| |^| y )
5049pm4.71i 613 . . . 4  |-  ( ( y  =  <. x ,  B >.  /\  x  e.  A )  <->  ( (
y  =  <. x ,  B >.  /\  x  e.  A )  /\  x  =  |^| |^| y ) )
5144pm5.32ri 619 . . . 4  |-  ( ( ( y  =  <. x ,  B >.  /\  x  e.  A )  /\  x  =  |^| |^| y )  <->  ( (
y  =  <. |^| |^| y ,  B >.  /\  |^| |^| y  e.  A )  /\  x  =  |^| |^| y ) )
5250, 51bitr2i 241 . . 3  |-  ( ( ( y  =  <. |^|
|^| y ,  B >.  /\  |^| |^| y  e.  A
)  /\  x  =  |^| |^| y )  <->  ( y  =  <. x ,  B >.  /\  x  e.  A
) )
53 ancom 437 . . 3  |-  ( ( y  =  <. x ,  B >.  /\  x  e.  A )  <->  ( x  e.  A  /\  y  =  <. x ,  B >. ) )
5448, 52, 533bitri 262 . 2  |-  ( ( y  e.  ( A  X.  { B }
)  /\  x  =  |^| |^| y )  <->  ( x  e.  A  /\  y  =  <. x ,  B >. ) )
553, 1, 14, 16, 54en2i 6899 1  |-  ( A  X.  { B }
)  ~~  A
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   _Vcvv 2788   {csn 3640   <.cop 3643   |^|cint 3862   class class class wbr 4023    X. cxp 4687    ~~ cen 6860
This theorem is referenced by:  xpsneng  6947  endisj  6949  infxpenlem  7641  pm110.643  7803  hashxplem  11385  xpnnenOLD  12488  rexpen  12506  heiborlem3  26537
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-int 3863  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-en 6864
  Copyright terms: Public domain W3C validator