MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpstopnlem1 Unicode version

Theorem xpstopnlem1 17606
Description: The function  F used in xpsval 13573 is a homeomorphism from the binary product topology to the indexed product topology. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
xpstopnlem1.f  |-  F  =  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )
xpstopnlem1.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
xpstopnlem1.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
Assertion
Ref Expression
xpstopnlem1  |-  ( ph  ->  F  e.  ( ( J  tX  K ) 
Homeo  ( Xt_ `  `' ( { J }  +c  { K } ) ) ) )
Distinct variable groups:    x, y, J    x, K, y    ph, x, y    x, X, y    x, Y, y
Allowed substitution hints:    F( x, y)

Proof of Theorem xpstopnlem1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 xpstopnlem1.j . . . . . . . . . 10  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 xpstopnlem1.k . . . . . . . . . 10  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
3 txtopon 17392 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  tX  K )  e.  (TopOn `  ( X  X.  Y
) ) )
41, 2, 3syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) ) )
5 eqid 2358 . . . . . . . . . . . . 13  |-  ( Xt_ `  { <. (/) ,  J >. } )  =  ( Xt_ `  { <. (/) ,  J >. } )
6 0ex 4231 . . . . . . . . . . . . . 14  |-  (/)  e.  _V
76a1i 10 . . . . . . . . . . . . 13  |-  ( ph  -> 
(/)  e.  _V )
85, 7, 1pt1hmeo 17603 . . . . . . . . . . . 12  |-  ( ph  ->  ( z  e.  X  |->  { <. (/) ,  z >. } )  e.  ( J  Homeo  ( Xt_ `  { <. (/) ,  J >. } ) ) )
9 hmeocn 17557 . . . . . . . . . . . 12  |-  ( ( z  e.  X  |->  {
<. (/) ,  z >. } )  e.  ( J  Homeo  ( Xt_ `  { <. (/) ,  J >. } ) )  ->  (
z  e.  X  |->  {
<. (/) ,  z >. } )  e.  ( J  Cn  ( Xt_ `  { <. (/) ,  J >. } ) ) )
10 cntop2 17077 . . . . . . . . . . . 12  |-  ( ( z  e.  X  |->  {
<. (/) ,  z >. } )  e.  ( J  Cn  ( Xt_ `  { <. (/) ,  J >. } ) )  ->  ( Xt_ `  { <. (/) ,  J >. } )  e.  Top )
118, 9, 103syl 18 . . . . . . . . . . 11  |-  ( ph  ->  ( Xt_ `  { <.
(/) ,  J >. } )  e.  Top )
12 eqid 2358 . . . . . . . . . . . 12  |-  U. ( Xt_ `  { <. (/) ,  J >. } )  =  U. ( Xt_ `  { <. (/)
,  J >. } )
1312toptopon 16777 . . . . . . . . . . 11  |-  ( (
Xt_ `  { <. (/) ,  J >. } )  e.  Top  <->  ( Xt_ `  { <. (/) ,  J >. } )  e.  (TopOn `  U. ( Xt_ `  { <.
(/) ,  J >. } ) ) )
1411, 13sylib 188 . . . . . . . . . 10  |-  ( ph  ->  ( Xt_ `  { <.
(/) ,  J >. } )  e.  (TopOn `  U. ( Xt_ `  { <.
(/) ,  J >. } ) ) )
15 eqid 2358 . . . . . . . . . . . . 13  |-  ( Xt_ `  { <. 1o ,  K >. } )  =  (
Xt_ `  { <. 1o ,  K >. } )
16 1on 6573 . . . . . . . . . . . . . 14  |-  1o  e.  On
1716a1i 10 . . . . . . . . . . . . 13  |-  ( ph  ->  1o  e.  On )
1815, 17, 2pt1hmeo 17603 . . . . . . . . . . . 12  |-  ( ph  ->  ( z  e.  Y  |->  { <. 1o ,  z
>. } )  e.  ( K  Homeo  ( Xt_ `  { <. 1o ,  K >. } ) ) )
19 hmeocn 17557 . . . . . . . . . . . 12  |-  ( ( z  e.  Y  |->  {
<. 1o ,  z >. } )  e.  ( K  Homeo  ( Xt_ `  { <. 1o ,  K >. } ) )  -> 
( z  e.  Y  |->  { <. 1o ,  z
>. } )  e.  ( K  Cn  ( Xt_ `  { <. 1o ,  K >. } ) ) )
20 cntop2 17077 . . . . . . . . . . . 12  |-  ( ( z  e.  Y  |->  {
<. 1o ,  z >. } )  e.  ( K  Cn  ( Xt_ `  { <. 1o ,  K >. } ) )  -> 
( Xt_ `  { <. 1o ,  K >. } )  e.  Top )
2118, 19, 203syl 18 . . . . . . . . . . 11  |-  ( ph  ->  ( Xt_ `  { <. 1o ,  K >. } )  e.  Top )
22 eqid 2358 . . . . . . . . . . . 12  |-  U. ( Xt_ `  { <. 1o ,  K >. } )  = 
U. ( Xt_ `  { <. 1o ,  K >. } )
2322toptopon 16777 . . . . . . . . . . 11  |-  ( (
Xt_ `  { <. 1o ,  K >. } )  e. 
Top 
<->  ( Xt_ `  { <. 1o ,  K >. } )  e.  (TopOn `  U. ( Xt_ `  { <. 1o ,  K >. } ) ) )
2421, 23sylib 188 . . . . . . . . . 10  |-  ( ph  ->  ( Xt_ `  { <. 1o ,  K >. } )  e.  (TopOn `  U. ( Xt_ `  { <. 1o ,  K >. } ) ) )
25 txtopon 17392 . . . . . . . . . 10  |-  ( ( ( Xt_ `  { <.
(/) ,  J >. } )  e.  (TopOn `  U. ( Xt_ `  { <.
(/) ,  J >. } ) )  /\  ( Xt_ `  { <. 1o ,  K >. } )  e.  (TopOn `  U. ( Xt_ `  { <. 1o ,  K >. } ) ) )  ->  ( ( Xt_ `  { <. (/) ,  J >. } )  tX  ( Xt_ `  { <. 1o ,  K >. } ) )  e.  (TopOn `  ( U. ( Xt_ `  { <. (/)
,  J >. } )  X.  U. ( Xt_ `  { <. 1o ,  K >. } ) ) ) )
2614, 24, 25syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  ( ( Xt_ `  { <.
(/) ,  J >. } )  tX  ( Xt_ `  { <. 1o ,  K >. } ) )  e.  (TopOn `  ( U. ( Xt_ `  { <. (/)
,  J >. } )  X.  U. ( Xt_ `  { <. 1o ,  K >. } ) ) ) )
27 opeq2 3878 . . . . . . . . . . . . . . . 16  |-  ( z  =  x  ->  <. (/) ,  z
>.  =  <. (/) ,  x >. )
2827sneqd 3729 . . . . . . . . . . . . . . 15  |-  ( z  =  x  ->  { <. (/)
,  z >. }  =  { <. (/) ,  x >. } )
29 eqid 2358 . . . . . . . . . . . . . . 15  |-  ( z  e.  X  |->  { <. (/)
,  z >. } )  =  ( z  e.  X  |->  { <. (/) ,  z
>. } )
30 snex 4297 . . . . . . . . . . . . . . 15  |-  { <. (/)
,  x >. }  e.  _V
3128, 29, 30fvmpt 5685 . . . . . . . . . . . . . 14  |-  ( x  e.  X  ->  (
( z  e.  X  |->  { <. (/) ,  z >. } ) `  x
)  =  { <. (/)
,  x >. } )
32 opeq2 3878 . . . . . . . . . . . . . . . 16  |-  ( z  =  y  ->  <. 1o , 
z >.  =  <. 1o , 
y >. )
3332sneqd 3729 . . . . . . . . . . . . . . 15  |-  ( z  =  y  ->  { <. 1o ,  z >. }  =  { <. 1o ,  y
>. } )
34 eqid 2358 . . . . . . . . . . . . . . 15  |-  ( z  e.  Y  |->  { <. 1o ,  z >. } )  =  ( z  e.  Y  |->  { <. 1o , 
z >. } )
35 snex 4297 . . . . . . . . . . . . . . 15  |-  { <. 1o ,  y >. }  e.  _V
3633, 34, 35fvmpt 5685 . . . . . . . . . . . . . 14  |-  ( y  e.  Y  ->  (
( z  e.  Y  |->  { <. 1o ,  z
>. } ) `  y
)  =  { <. 1o ,  y >. } )
37 opeq12 3879 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  e.  X  |->  { <. (/) ,  z
>. } ) `  x
)  =  { <. (/)
,  x >. }  /\  ( ( z  e.  Y  |->  { <. 1o , 
z >. } ) `  y )  =  { <. 1o ,  y >. } )  ->  <. (
( z  e.  X  |->  { <. (/) ,  z >. } ) `  x
) ,  ( ( z  e.  Y  |->  {
<. 1o ,  z >. } ) `  y
) >.  =  <. { <. (/)
,  x >. } ,  { <. 1o ,  y
>. } >. )
3831, 36, 37syl2an 463 . . . . . . . . . . . . 13  |-  ( ( x  e.  X  /\  y  e.  Y )  -> 
<. ( ( z  e.  X  |->  { <. (/) ,  z
>. } ) `  x
) ,  ( ( z  e.  Y  |->  {
<. 1o ,  z >. } ) `  y
) >.  =  <. { <. (/)
,  x >. } ,  { <. 1o ,  y
>. } >. )
3938mpt2eq3ia 6000 . . . . . . . . . . . 12  |-  ( x  e.  X ,  y  e.  Y  |->  <. (
( z  e.  X  |->  { <. (/) ,  z >. } ) `  x
) ,  ( ( z  e.  Y  |->  {
<. 1o ,  z >. } ) `  y
) >. )  =  ( x  e.  X , 
y  e.  Y  |->  <. { <. (/) ,  x >. } ,  { <. 1o , 
y >. } >. )
40 toponuni 16771 . . . . . . . . . . . . . 14  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
411, 40syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  X  =  U. J
)
42 toponuni 16771 . . . . . . . . . . . . . 14  |-  ( K  e.  (TopOn `  Y
)  ->  Y  =  U. K )
432, 42syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  Y  =  U. K
)
44 mpt2eq12 5995 . . . . . . . . . . . . 13  |-  ( ( X  =  U. J  /\  Y  =  U. K )  ->  (
x  e.  X , 
y  e.  Y  |->  <.
( ( z  e.  X  |->  { <. (/) ,  z
>. } ) `  x
) ,  ( ( z  e.  Y  |->  {
<. 1o ,  z >. } ) `  y
) >. )  =  ( x  e.  U. J ,  y  e.  U. K  |-> 
<. ( ( z  e.  X  |->  { <. (/) ,  z
>. } ) `  x
) ,  ( ( z  e.  Y  |->  {
<. 1o ,  z >. } ) `  y
) >. ) )
4541, 43, 44syl2anc 642 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |-> 
<. ( ( z  e.  X  |->  { <. (/) ,  z
>. } ) `  x
) ,  ( ( z  e.  Y  |->  {
<. 1o ,  z >. } ) `  y
) >. )  =  ( x  e.  U. J ,  y  e.  U. K  |-> 
<. ( ( z  e.  X  |->  { <. (/) ,  z
>. } ) `  x
) ,  ( ( z  e.  Y  |->  {
<. 1o ,  z >. } ) `  y
) >. ) )
4639, 45syl5eqr 2404 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |-> 
<. { <. (/) ,  x >. } ,  { <. 1o , 
y >. } >. )  =  ( x  e. 
U. J ,  y  e.  U. K  |->  <.
( ( z  e.  X  |->  { <. (/) ,  z
>. } ) `  x
) ,  ( ( z  e.  Y  |->  {
<. 1o ,  z >. } ) `  y
) >. ) )
47 eqid 2358 . . . . . . . . . . . 12  |-  U. J  =  U. J
48 eqid 2358 . . . . . . . . . . . 12  |-  U. K  =  U. K
4947, 48, 8, 18txhmeo 17600 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  U. J ,  y  e.  U. K  |->  <. ( ( z  e.  X  |->  { <. (/)
,  z >. } ) `
 x ) ,  ( ( z  e.  Y  |->  { <. 1o , 
z >. } ) `  y ) >. )  e.  ( ( J  tX  K )  Homeo  ( (
Xt_ `  { <. (/) ,  J >. } )  tX  ( Xt_ `  { <. 1o ,  K >. } ) ) ) )
5046, 49eqeltrd 2432 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |-> 
<. { <. (/) ,  x >. } ,  { <. 1o , 
y >. } >. )  e.  ( ( J  tX  K )  Homeo  ( (
Xt_ `  { <. (/) ,  J >. } )  tX  ( Xt_ `  { <. 1o ,  K >. } ) ) ) )
51 hmeocn 17557 . . . . . . . . . 10  |-  ( ( x  e.  X , 
y  e.  Y  |->  <. { <. (/) ,  x >. } ,  { <. 1o , 
y >. } >. )  e.  ( ( J  tX  K )  Homeo  ( (
Xt_ `  { <. (/) ,  J >. } )  tX  ( Xt_ `  { <. 1o ,  K >. } ) ) )  ->  ( x  e.  X ,  y  e.  Y  |->  <. { <. (/) ,  x >. } ,  { <. 1o ,  y >. } >. )  e.  ( ( J 
tX  K )  Cn  ( ( Xt_ `  { <.
(/) ,  J >. } )  tX  ( Xt_ `  { <. 1o ,  K >. } ) ) ) )
5250, 51syl 15 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |-> 
<. { <. (/) ,  x >. } ,  { <. 1o , 
y >. } >. )  e.  ( ( J  tX  K )  Cn  (
( Xt_ `  { <. (/)
,  J >. } ) 
tX  ( Xt_ `  { <. 1o ,  K >. } ) ) ) )
53 cnf2 17085 . . . . . . . . 9  |-  ( ( ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) )  /\  (
( Xt_ `  { <. (/)
,  J >. } ) 
tX  ( Xt_ `  { <. 1o ,  K >. } ) )  e.  (TopOn `  ( U. ( Xt_ `  { <. (/) ,  J >. } )  X.  U. ( Xt_ `  { <. 1o ,  K >. } ) ) )  /\  ( x  e.  X ,  y  e.  Y  |->  <. { <. (/)
,  x >. } ,  { <. 1o ,  y
>. } >. )  e.  ( ( J  tX  K
)  Cn  ( (
Xt_ `  { <. (/) ,  J >. } )  tX  ( Xt_ `  { <. 1o ,  K >. } ) ) ) )  ->  (
x  e.  X , 
y  e.  Y  |->  <. { <. (/) ,  x >. } ,  { <. 1o , 
y >. } >. ) : ( X  X.  Y ) --> ( U. ( Xt_ `  { <. (/)
,  J >. } )  X.  U. ( Xt_ `  { <. 1o ,  K >. } ) ) )
544, 26, 52, 53syl3anc 1182 . . . . . . . 8  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |-> 
<. { <. (/) ,  x >. } ,  { <. 1o , 
y >. } >. ) : ( X  X.  Y ) --> ( U. ( Xt_ `  { <. (/)
,  J >. } )  X.  U. ( Xt_ `  { <. 1o ,  K >. } ) ) )
55 eqid 2358 . . . . . . . . 9  |-  ( x  e.  X ,  y  e.  Y  |->  <. { <. (/)
,  x >. } ,  { <. 1o ,  y
>. } >. )  =  ( x  e.  X , 
y  e.  Y  |->  <. { <. (/) ,  x >. } ,  { <. 1o , 
y >. } >. )
5655fmpt2 6278 . . . . . . . 8  |-  ( A. x  e.  X  A. y  e.  Y  <. {
<. (/) ,  x >. } ,  { <. 1o , 
y >. } >.  e.  ( U. ( Xt_ `  { <.
(/) ,  J >. } )  X.  U. ( Xt_ `  { <. 1o ,  K >. } ) )  <-> 
( x  e.  X ,  y  e.  Y  |-> 
<. { <. (/) ,  x >. } ,  { <. 1o , 
y >. } >. ) : ( X  X.  Y ) --> ( U. ( Xt_ `  { <. (/)
,  J >. } )  X.  U. ( Xt_ `  { <. 1o ,  K >. } ) ) )
5754, 56sylibr 203 . . . . . . 7  |-  ( ph  ->  A. x  e.  X  A. y  e.  Y  <. { <. (/) ,  x >. } ,  { <. 1o , 
y >. } >.  e.  ( U. ( Xt_ `  { <.
(/) ,  J >. } )  X.  U. ( Xt_ `  { <. 1o ,  K >. } ) ) )
5857r19.21bi 2717 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  A. y  e.  Y  <. { <. (/)
,  x >. } ,  { <. 1o ,  y
>. } >.  e.  ( U. ( Xt_ `  { <.
(/) ,  J >. } )  X.  U. ( Xt_ `  { <. 1o ,  K >. } ) ) )
5958r19.21bi 2717 . . . . 5  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  Y )  ->  <. { <. (/)
,  x >. } ,  { <. 1o ,  y
>. } >.  e.  ( U. ( Xt_ `  { <.
(/) ,  J >. } )  X.  U. ( Xt_ `  { <. 1o ,  K >. } ) ) )
6059anasss 628 . . . 4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  ->  <. { <. (/) ,  x >. } ,  { <. 1o , 
y >. } >.  e.  ( U. ( Xt_ `  { <.
(/) ,  J >. } )  X.  U. ( Xt_ `  { <. 1o ,  K >. } ) ) )
61 eqidd 2359 . . . 4  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |-> 
<. { <. (/) ,  x >. } ,  { <. 1o , 
y >. } >. )  =  ( x  e.  X ,  y  e.  Y  |->  <. { <. (/) ,  x >. } ,  { <. 1o ,  y >. } >. ) )
62 vex 2867 . . . . . . . . 9  |-  x  e. 
_V
63 vex 2867 . . . . . . . . 9  |-  y  e. 
_V
6462, 63op1std 6217 . . . . . . . 8  |-  ( z  =  <. x ,  y
>.  ->  ( 1st `  z
)  =  x )
6562, 63op2ndd 6218 . . . . . . . 8  |-  ( z  =  <. x ,  y
>.  ->  ( 2nd `  z
)  =  y )
6664, 65uneq12d 3406 . . . . . . 7  |-  ( z  =  <. x ,  y
>.  ->  ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( x  u.  y ) )
6766mpt2mpt 6026 . . . . . 6  |-  ( z  e.  ( U. ( Xt_ `  { <. (/) ,  J >. } )  X.  U. ( Xt_ `  { <. 1o ,  K >. } ) )  |->  ( ( 1st `  z )  u.  ( 2nd `  z ) ) )  =  ( x  e.  U. ( Xt_ `  { <. (/) ,  J >. } ) ,  y  e. 
U. ( Xt_ `  { <. 1o ,  K >. } )  |->  ( x  u.  y ) )
6867eqcomi 2362 . . . . 5  |-  ( x  e.  U. ( Xt_ `  { <. (/) ,  J >. } ) ,  y  e. 
U. ( Xt_ `  { <. 1o ,  K >. } )  |->  ( x  u.  y ) )  =  ( z  e.  ( U. ( Xt_ `  { <.
(/) ,  J >. } )  X.  U. ( Xt_ `  { <. 1o ,  K >. } ) ) 
|->  ( ( 1st `  z
)  u.  ( 2nd `  z ) ) )
6968a1i 10 . . . 4  |-  ( ph  ->  ( x  e.  U. ( Xt_ `  { <. (/)
,  J >. } ) ,  y  e.  U. ( Xt_ `  { <. 1o ,  K >. } ) 
|->  ( x  u.  y
) )  =  ( z  e.  ( U. ( Xt_ `  { <. (/)
,  J >. } )  X.  U. ( Xt_ `  { <. 1o ,  K >. } ) )  |->  ( ( 1st `  z
)  u.  ( 2nd `  z ) ) ) )
7030, 35op1std 6217 . . . . . 6  |-  ( z  =  <. { <. (/) ,  x >. } ,  { <. 1o ,  y >. } >.  -> 
( 1st `  z
)  =  { <. (/)
,  x >. } )
7130, 35op2ndd 6218 . . . . . 6  |-  ( z  =  <. { <. (/) ,  x >. } ,  { <. 1o ,  y >. } >.  -> 
( 2nd `  z
)  =  { <. 1o ,  y >. } )
7270, 71uneq12d 3406 . . . . 5  |-  ( z  =  <. { <. (/) ,  x >. } ,  { <. 1o ,  y >. } >.  -> 
( ( 1st `  z
)  u.  ( 2nd `  z ) )  =  ( { <. (/) ,  x >. }  u.  { <. 1o ,  y >. } ) )
73 xpscg 13559 . . . . . . 7  |-  ( ( x  e.  _V  /\  y  e.  _V )  ->  `' ( { x }  +c  { y } )  =  { <. (/)
,  x >. ,  <. 1o ,  y >. } )
7462, 63, 73mp2an 653 . . . . . 6  |-  `' ( { x }  +c  { y } )  =  { <. (/) ,  x >. , 
<. 1o ,  y >. }
75 df-pr 3723 . . . . . 6  |-  { <. (/)
,  x >. ,  <. 1o ,  y >. }  =  ( { <. (/) ,  x >. }  u.  { <. 1o , 
y >. } )
7674, 75eqtri 2378 . . . . 5  |-  `' ( { x }  +c  { y } )  =  ( { <. (/) ,  x >. }  u.  { <. 1o ,  y >. } )
7772, 76syl6eqr 2408 . . . 4  |-  ( z  =  <. { <. (/) ,  x >. } ,  { <. 1o ,  y >. } >.  -> 
( ( 1st `  z
)  u.  ( 2nd `  z ) )  =  `' ( { x }  +c  { y } ) )
7860, 61, 69, 77fmpt2co 6289 . . 3  |-  ( ph  ->  ( ( x  e. 
U. ( Xt_ `  { <.
(/) ,  J >. } ) ,  y  e. 
U. ( Xt_ `  { <. 1o ,  K >. } )  |->  ( x  u.  y ) )  o.  ( x  e.  X ,  y  e.  Y  |-> 
<. { <. (/) ,  x >. } ,  { <. 1o , 
y >. } >. )
)  =  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) ) )
79 xpstopnlem1.f . . 3  |-  F  =  ( x  e.  X ,  y  e.  Y  |->  `' ( { x }  +c  { y } ) )
8078, 79syl6reqr 2409 . 2  |-  ( ph  ->  F  =  ( ( x  e.  U. ( Xt_ `  { <. (/) ,  J >. } ) ,  y  e.  U. ( Xt_ `  { <. 1o ,  K >. } )  |->  ( x  u.  y ) )  o.  ( x  e.  X ,  y  e.  Y  |->  <. { <. (/) ,  x >. } ,  { <. 1o ,  y >. } >. ) ) )
81 eqid 2358 . . . . 5  |-  U. ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { (/) } ) )  =  U. ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { (/) } ) )
82 eqid 2358 . . . . 5  |-  U. ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { 1o } ) )  =  U. ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { 1o } ) )
83 eqid 2358 . . . . 5  |-  ( Xt_ `  `' ( { J }  +c  { K }
) )  =  (
Xt_ `  `' ( { J }  +c  { K } ) )
84 eqid 2358 . . . . 5  |-  ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { (/) } ) )  =  (
Xt_ `  ( `' ( { J }  +c  { K } )  |`  { (/) } ) )
85 eqid 2358 . . . . 5  |-  ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { 1o } ) )  =  ( Xt_ `  ( `' ( { J }  +c  { K }
)  |`  { 1o }
) )
86 eqid 2358 . . . . 5  |-  ( x  e.  U. ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { (/) } ) ) ,  y  e.  U. ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { 1o } ) )  |->  ( x  u.  y ) )  =  ( x  e.  U. ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { (/) } ) ) ,  y  e.  U. ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { 1o } ) )  |->  ( x  u.  y ) )
87 2on 6574 . . . . . 6  |-  2o  e.  On
8887a1i 10 . . . . 5  |-  ( ph  ->  2o  e.  On )
89 topontop 16770 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
901, 89syl 15 . . . . . 6  |-  ( ph  ->  J  e.  Top )
91 topontop 16770 . . . . . . 7  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
922, 91syl 15 . . . . . 6  |-  ( ph  ->  K  e.  Top )
93 xpscf 13567 . . . . . 6  |-  ( `' ( { J }  +c  { K } ) : 2o --> Top  <->  ( J  e.  Top  /\  K  e. 
Top ) )
9490, 92, 93sylanbrc 645 . . . . 5  |-  ( ph  ->  `' ( { J }  +c  { K }
) : 2o --> Top )
95 df2o3 6579 . . . . . . 7  |-  2o  =  { (/) ,  1o }
96 df-pr 3723 . . . . . . 7  |-  { (/) ,  1o }  =  ( { (/) }  u.  { 1o } )
9795, 96eqtri 2378 . . . . . 6  |-  2o  =  ( { (/) }  u.  { 1o } )
9897a1i 10 . . . . 5  |-  ( ph  ->  2o  =  ( {
(/) }  u.  { 1o } ) )
99 1n0 6581 . . . . . . 7  |-  1o  =/=  (/)
10099necomi 2603 . . . . . 6  |-  (/)  =/=  1o
101 disjsn2 3770 . . . . . 6  |-  ( (/)  =/=  1o  ->  ( { (/)
}  i^i  { 1o } )  =  (/) )
102100, 101mp1i 11 . . . . 5  |-  ( ph  ->  ( { (/) }  i^i  { 1o } )  =  (/) )
10381, 82, 83, 84, 85, 86, 88, 94, 98, 102ptunhmeo 17605 . . . 4  |-  ( ph  ->  ( x  e.  U. ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { (/) } ) ) ,  y  e.  U. ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { 1o } ) )  |->  ( x  u.  y ) )  e.  ( ( ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { (/) } ) )  tX  ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { 1o } ) ) )  Homeo  ( Xt_ `  `' ( { J }  +c  { K }
) ) ) )
104 xpscfn 13560 . . . . . . . . . . 11  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  `' ( { J }  +c  { K } )  Fn  2o )
1051, 2, 104syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  `' ( { J }  +c  { K }
)  Fn  2o )
1066prid1 3810 . . . . . . . . . . 11  |-  (/)  e.  { (/)
,  1o }
107106, 95eleqtrri 2431 . . . . . . . . . 10  |-  (/)  e.  2o
108 fnressn 5789 . . . . . . . . . 10  |-  ( ( `' ( { J }  +c  { K }
)  Fn  2o  /\  (/) 
e.  2o )  -> 
( `' ( { J }  +c  { K } )  |`  { (/) } )  =  { <. (/)
,  ( `' ( { J }  +c  { K } ) `  (/) ) >. } )
109105, 107, 108sylancl 643 . . . . . . . . 9  |-  ( ph  ->  ( `' ( { J }  +c  { K } )  |`  { (/) } )  =  { <. (/)
,  ( `' ( { J }  +c  { K } ) `  (/) ) >. } )
110 xpsc0 13561 . . . . . . . . . . . 12  |-  ( J  e.  (TopOn `  X
)  ->  ( `' ( { J }  +c  { K } ) `  (/) )  =  J )
1111, 110syl 15 . . . . . . . . . . 11  |-  ( ph  ->  ( `' ( { J }  +c  { K } ) `  (/) )  =  J )
112111opeq2d 3884 . . . . . . . . . 10  |-  ( ph  -> 
<. (/) ,  ( `' ( { J }  +c  { K } ) `
 (/) ) >.  =  <. (/)
,  J >. )
113112sneqd 3729 . . . . . . . . 9  |-  ( ph  ->  { <. (/) ,  ( `' ( { J }  +c  { K } ) `
 (/) ) >. }  =  { <. (/) ,  J >. } )
114109, 113eqtrd 2390 . . . . . . . 8  |-  ( ph  ->  ( `' ( { J }  +c  { K } )  |`  { (/) } )  =  { <. (/)
,  J >. } )
115114fveq2d 5612 . . . . . . 7  |-  ( ph  ->  ( Xt_ `  ( `' ( { J }  +c  { K }
)  |`  { (/) } ) )  =  ( Xt_ `  { <. (/) ,  J >. } ) )
116115unieqd 3919 . . . . . 6  |-  ( ph  ->  U. ( Xt_ `  ( `' ( { J }  +c  { K }
)  |`  { (/) } ) )  =  U. ( Xt_ `  { <. (/) ,  J >. } ) )
11716elexi 2873 . . . . . . . . . . . 12  |-  1o  e.  _V
118117prid2 3811 . . . . . . . . . . 11  |-  1o  e.  {
(/) ,  1o }
119118, 95eleqtrri 2431 . . . . . . . . . 10  |-  1o  e.  2o
120 fnressn 5789 . . . . . . . . . 10  |-  ( ( `' ( { J }  +c  { K }
)  Fn  2o  /\  1o  e.  2o )  -> 
( `' ( { J }  +c  { K } )  |`  { 1o } )  =  { <. 1o ,  ( `' ( { J }  +c  { K } ) `
 1o ) >. } )
121105, 119, 120sylancl 643 . . . . . . . . 9  |-  ( ph  ->  ( `' ( { J }  +c  { K } )  |`  { 1o } )  =  { <. 1o ,  ( `' ( { J }  +c  { K } ) `
 1o ) >. } )
122 xpsc1 13562 . . . . . . . . . . . 12  |-  ( K  e.  (TopOn `  Y
)  ->  ( `' ( { J }  +c  { K } ) `  1o )  =  K
)
1232, 122syl 15 . . . . . . . . . . 11  |-  ( ph  ->  ( `' ( { J }  +c  { K } ) `  1o )  =  K )
124123opeq2d 3884 . . . . . . . . . 10  |-  ( ph  -> 
<. 1o ,  ( `' ( { J }  +c  { K } ) `
 1o ) >.  =  <. 1o ,  K >. )
125124sneqd 3729 . . . . . . . . 9  |-  ( ph  ->  { <. 1o ,  ( `' ( { J }  +c  { K }
) `  1o ) >. }  =  { <. 1o ,  K >. } )
126121, 125eqtrd 2390 . . . . . . . 8  |-  ( ph  ->  ( `' ( { J }  +c  { K } )  |`  { 1o } )  =  { <. 1o ,  K >. } )
127126fveq2d 5612 . . . . . . 7  |-  ( ph  ->  ( Xt_ `  ( `' ( { J }  +c  { K }
)  |`  { 1o }
) )  =  (
Xt_ `  { <. 1o ,  K >. } ) )
128127unieqd 3919 . . . . . 6  |-  ( ph  ->  U. ( Xt_ `  ( `' ( { J }  +c  { K }
)  |`  { 1o }
) )  =  U. ( Xt_ `  { <. 1o ,  K >. } ) )
129 eqidd 2359 . . . . . 6  |-  ( ph  ->  ( x  u.  y
)  =  ( x  u.  y ) )
130116, 128, 129mpt2eq123dv 5997 . . . . 5  |-  ( ph  ->  ( x  e.  U. ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { (/) } ) ) ,  y  e.  U. ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { 1o } ) )  |->  ( x  u.  y ) )  =  ( x  e.  U. ( Xt_ `  { <. (/)
,  J >. } ) ,  y  e.  U. ( Xt_ `  { <. 1o ,  K >. } ) 
|->  ( x  u.  y
) ) )
131115, 127oveq12d 5963 . . . . . 6  |-  ( ph  ->  ( ( Xt_ `  ( `' ( { J }  +c  { K }
)  |`  { (/) } ) )  tX  ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { 1o } ) ) )  =  ( ( Xt_ `  { <. (/) ,  J >. } )  tX  ( Xt_ `  { <. 1o ,  K >. } ) ) )
132131oveq1d 5960 . . . . 5  |-  ( ph  ->  ( ( ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { (/) } ) )  tX  ( Xt_ `  ( `' ( { J }  +c  { K } )  |`  { 1o } ) ) )  Homeo  ( Xt_ `  `' ( { J }  +c  { K }
) ) )  =  ( ( ( Xt_ `  { <. (/) ,  J >. } )  tX  ( Xt_ `  { <. 1o ,  K >. } ) )  Homeo  (
Xt_ `  `' ( { J }  +c  { K } ) ) ) )
133130, 132eleq12d 2426 . . . 4  |-  ( ph  ->  ( ( x  e. 
U. ( Xt_ `  ( `' ( { J }  +c  { K }
)  |`  { (/) } ) ) ,  y  e. 
U. ( Xt_ `  ( `' ( { J }  +c  { K }
)  |`  { 1o }
) )  |->  ( x  u.  y ) )  e.  ( ( (
Xt_ `  ( `' ( { J }  +c  { K } )  |`  { (/) } ) ) 
tX  ( Xt_ `  ( `' ( { J }  +c  { K }
)  |`  { 1o }
) ) )  Homeo  (
Xt_ `  `' ( { J }  +c  { K } ) ) )  <-> 
( x  e.  U. ( Xt_ `  { <. (/)
,  J >. } ) ,  y  e.  U. ( Xt_ `  { <. 1o ,  K >. } ) 
|->  ( x  u.  y
) )  e.  ( ( ( Xt_ `  { <.
(/) ,  J >. } )  tX  ( Xt_ `  { <. 1o ,  K >. } ) )  Homeo  (
Xt_ `  `' ( { J }  +c  { K } ) ) ) ) )
134103, 133mpbid 201 . . 3  |-  ( ph  ->  ( x  e.  U. ( Xt_ `  { <. (/)
,  J >. } ) ,  y  e.  U. ( Xt_ `  { <. 1o ,  K >. } ) 
|->  ( x  u.  y
) )  e.  ( ( ( Xt_ `  { <.
(/) ,  J >. } )  tX  ( Xt_ `  { <. 1o ,  K >. } ) )  Homeo  (
Xt_ `  `' ( { J }  +c  { K } ) ) ) )
135 hmeoco 17569 . . 3  |-  ( ( ( x  e.  X ,  y  e.  Y  |-> 
<. { <. (/) ,  x >. } ,  { <. 1o , 
y >. } >. )  e.  ( ( J  tX  K )  Homeo  ( (
Xt_ `  { <. (/) ,  J >. } )  tX  ( Xt_ `  { <. 1o ,  K >. } ) ) )  /\  ( x  e.  U. ( Xt_ `  { <. (/) ,  J >. } ) ,  y  e. 
U. ( Xt_ `  { <. 1o ,  K >. } )  |->  ( x  u.  y ) )  e.  ( ( ( Xt_ `  { <. (/) ,  J >. } )  tX  ( Xt_ `  { <. 1o ,  K >. } ) )  Homeo  (
Xt_ `  `' ( { J }  +c  { K } ) ) ) )  ->  ( (
x  e.  U. ( Xt_ `  { <. (/) ,  J >. } ) ,  y  e.  U. ( Xt_ `  { <. 1o ,  K >. } )  |->  ( x  u.  y ) )  o.  ( x  e.  X ,  y  e.  Y  |->  <. { <. (/) ,  x >. } ,  { <. 1o ,  y >. } >. ) )  e.  ( ( J  tX  K ) 
Homeo  ( Xt_ `  `' ( { J }  +c  { K } ) ) ) )
13650, 134, 135syl2anc 642 . 2  |-  ( ph  ->  ( ( x  e. 
U. ( Xt_ `  { <.
(/) ,  J >. } ) ,  y  e. 
U. ( Xt_ `  { <. 1o ,  K >. } )  |->  ( x  u.  y ) )  o.  ( x  e.  X ,  y  e.  Y  |-> 
<. { <. (/) ,  x >. } ,  { <. 1o , 
y >. } >. )
)  e.  ( ( J  tX  K ) 
Homeo  ( Xt_ `  `' ( { J }  +c  { K } ) ) ) )
13780, 136eqeltrd 2432 1  |-  ( ph  ->  F  e.  ( ( J  tX  K ) 
Homeo  ( Xt_ `  `' ( { J }  +c  { K } ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1642    e. wcel 1710    =/= wne 2521   A.wral 2619   _Vcvv 2864    u. cun 3226    i^i cin 3227   (/)c0 3531   {csn 3716   {cpr 3717   <.cop 3719   U.cuni 3908    e. cmpt 4158   Oncon0 4474    X. cxp 4769   `'ccnv 4770    |` cres 4773    o. ccom 4775    Fn wfn 5332   -->wf 5333   ` cfv 5337  (class class class)co 5945    e. cmpt2 5947   1stc1st 6207   2ndc2nd 6208   1oc1o 6559   2oc2o 6560    +c ccda 7883   Xt_cpt 13442   Topctop 16737  TopOnctopon 16738    Cn ccn 17060    tX ctx 17361    Homeo chmeo 17550
This theorem is referenced by:  xpstopnlem2  17608
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-iin 3989  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-recs 6475  df-rdg 6510  df-1o 6566  df-2o 6567  df-oadd 6570  df-er 6747  df-map 6862  df-ixp 6906  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955  df-fi 7255  df-cda 7884  df-topgen 13443  df-pt 13444  df-top 16742  df-bases 16744  df-topon 16745  df-cn 17063  df-cnp 17064  df-tx 17363  df-hmeo 17552
  Copyright terms: Public domain W3C validator