MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpundi Unicode version

Theorem xpundi 4729
Description: Distributive law for cross product over union. Theorem 103 of [Suppes] p. 52. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
xpundi  |-  ( A  X.  ( B  u.  C ) )  =  ( ( A  X.  B )  u.  ( A  X.  C ) )

Proof of Theorem xpundi
StepHypRef Expression
1 df-xp 4675 . 2  |-  ( A  X.  ( B  u.  C ) )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  ( B  u.  C
) ) }
2 df-xp 4675 . . . 4  |-  ( A  X.  B )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  B ) }
3 df-xp 4675 . . . 4  |-  ( A  X.  C )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  C ) }
42, 3uneq12i 3302 . . 3  |-  ( ( A  X.  B )  u.  ( A  X.  C ) )  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }  u.  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  C ) } )
5 elun 3291 . . . . . . 7  |-  ( y  e.  ( B  u.  C )  <->  ( y  e.  B  \/  y  e.  C ) )
65anbi2i 678 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  ( B  u.  C ) )  <->  ( x  e.  A  /\  (
y  e.  B  \/  y  e.  C )
) )
7 andi 842 . . . . . 6  |-  ( ( x  e.  A  /\  ( y  e.  B  \/  y  e.  C
) )  <->  ( (
x  e.  A  /\  y  e.  B )  \/  ( x  e.  A  /\  y  e.  C
) ) )
86, 7bitri 242 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  ( B  u.  C ) )  <->  ( (
x  e.  A  /\  y  e.  B )  \/  ( x  e.  A  /\  y  e.  C
) ) )
98opabbii 4057 . . . 4  |-  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( B  u.  C ) ) }  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B
)  \/  ( x  e.  A  /\  y  e.  C ) ) }
10 unopab 4069 . . . 4  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }  u.  {
<. x ,  y >.  |  ( x  e.  A  /\  y  e.  C ) } )  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B
)  \/  ( x  e.  A  /\  y  e.  C ) ) }
119, 10eqtr4i 2281 . . 3  |-  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( B  u.  C ) ) }  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }  u.  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  C ) } )
124, 11eqtr4i 2281 . 2  |-  ( ( A  X.  B )  u.  ( A  X.  C ) )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  ( B  u.  C
) ) }
131, 12eqtr4i 2281 1  |-  ( A  X.  ( B  u.  C ) )  =  ( ( A  X.  B )  u.  ( A  X.  C ) )
Colors of variables: wff set class
Syntax hints:    \/ wo 359    /\ wa 360    = wceq 1619    e. wcel 1621    u. cun 3125   {copab 4050    X. cxp 4659
This theorem is referenced by:  xpun  4735  xp2cda  7774  xpcdaen  7777  alephadd  8167
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-v 2765  df-un 3132  df-opab 4052  df-xp 4675
  Copyright terms: Public domain W3C validator