MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpundi Unicode version

Theorem xpundi 4334
Description: Distributive law for cross product over union. Theorem 103 of [Suppes] p. 52. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
xpundi  |-  ( A  X.  ( B  u.  C ) )  =  ( ( A  X.  B )  u.  ( A  X.  C ) )

Proof of Theorem xpundi
StepHypRef Expression
1 elun 2943 . . . . . 6  |-  ( y  e.  ( B  u.  C )  <->  ( y  e.  B  \/  y  e.  C ) )
21anbi2i 668 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  ( B  u.  C ) )  <->  ( x  e.  A  /\  (
y  e.  B  \/  y  e.  C )
) )
3 andi 799 . . . . 5  |-  ( ( x  e.  A  /\  ( y  e.  B  \/  y  e.  C
) )  <->  ( (
x  e.  A  /\  y  e.  B )  \/  ( x  e.  A  /\  y  e.  C
) ) )
42, 3bitri 238 . . . 4  |-  ( ( x  e.  A  /\  y  e.  ( B  u.  C ) )  <->  ( (
x  e.  A  /\  y  e.  B )  \/  ( x  e.  A  /\  y  e.  C
) ) )
54opabbii 3656 . . 3  |-  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( B  u.  C ) ) }  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B
)  \/  ( x  e.  A  /\  y  e.  C ) ) }
6 unopab 3667 . . 3  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }  u.  {
<. x ,  y >.  |  ( x  e.  A  /\  y  e.  C ) } )  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B
)  \/  ( x  e.  A  /\  y  e.  C ) ) }
75, 6eqtr4i 2092 . 2  |-  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( B  u.  C ) ) }  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }  u.  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  C ) } )
8 df-xp 4280 . 2  |-  ( A  X.  ( B  u.  C ) )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  ( B  u.  C
) ) }
9 df-xp 4280 . . 3  |-  ( A  X.  B )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  B ) }
10 df-xp 4280 . . 3  |-  ( A  X.  C )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  C ) }
119, 10uneq12i 2954 . 2  |-  ( ( A  X.  B )  u.  ( A  X.  C ) )  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }  u.  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  C ) } )
127, 8, 113eqtr4i 2099 1  |-  ( A  X.  ( B  u.  C ) )  =  ( ( A  X.  B )  u.  ( A  X.  C ) )
Colors of variables: wff set class
Syntax hints:    \/ wo 355    /\ wa 356    = wceq 1524    e. wcel 1526    u. cun 2796   {copab 3649    X. cxp 4264
This theorem is referenced by:  xpun  4340  xp2cda  7279  xpcdaen  7282  alephadd  7681
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-5 1446  ax-6 1447  ax-7 1448  ax-gen 1449  ax-8 1528  ax-11 1529  ax-17 1533  ax-12o 1567  ax-10 1581  ax-9 1587  ax-4 1594  ax-16 1780  ax-ext 2051
This theorem depends on definitions:  df-bi 175  df-or 357  df-an 358  df-ex 1451  df-sb 1741  df-clab 2057  df-cleq 2062  df-clel 2065  df-v 2482  df-un 2803  df-opab 3651  df-xp 4280
  Copyright terms: Public domain W3C validator