MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpwdomg Structured version   Unicode version

Theorem xpwdomg 7554
Description: Weak dominance of a cross product. (Contributed by Stefan O'Rear, 13-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
xpwdomg  |-  ( ( A  ~<_*  B  /\  C  ~<_*  D
)  ->  ( A  X.  C )  ~<_*  ( B  X.  D
) )

Proof of Theorem xpwdomg
Dummy variables  a 
b  c  f  g  x  y  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brwdom3i 7552 . . 3  |-  ( A  ~<_*  B  ->  E. f A. a  e.  A  E. b  e.  B  a  =  ( f `  b
) )
21adantr 453 . 2  |-  ( ( A  ~<_*  B  /\  C  ~<_*  D
)  ->  E. f A. a  e.  A  E. b  e.  B  a  =  ( f `  b ) )
3 brwdom3i 7552 . . 3  |-  ( C  ~<_*  D  ->  E. g A. c  e.  C  E. d  e.  D  c  =  ( g `  d
) )
43adantl 454 . 2  |-  ( ( A  ~<_*  B  /\  C  ~<_*  D
)  ->  E. g A. c  e.  C  E. d  e.  D  c  =  ( g `  d ) )
5 relwdom 7535 . . . . . . . . . 10  |-  Rel  ~<_*
65brrelexi 4919 . . . . . . . . 9  |-  ( A  ~<_*  B  ->  A  e.  _V )
75brrelexi 4919 . . . . . . . . 9  |-  ( C  ~<_*  D  ->  C  e.  _V )
8 xpexg 4990 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  C  e.  _V )  ->  ( A  X.  C
)  e.  _V )
96, 7, 8syl2an 465 . . . . . . . 8  |-  ( ( A  ~<_*  B  /\  C  ~<_*  D
)  ->  ( A  X.  C )  e.  _V )
109adantr 453 . . . . . . 7  |-  ( ( ( A  ~<_*  B  /\  C  ~<_*  D
)  /\  ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  /\  A. c  e.  C  E. d  e.  D  c  =  ( g `  d ) ) )  ->  ( A  X.  C )  e.  _V )
115brrelex2i 4920 . . . . . . . . 9  |-  ( A  ~<_*  B  ->  B  e.  _V )
125brrelex2i 4920 . . . . . . . . 9  |-  ( C  ~<_*  D  ->  D  e.  _V )
13 xpexg 4990 . . . . . . . . 9  |-  ( ( B  e.  _V  /\  D  e.  _V )  ->  ( B  X.  D
)  e.  _V )
1411, 12, 13syl2an 465 . . . . . . . 8  |-  ( ( A  ~<_*  B  /\  C  ~<_*  D
)  ->  ( B  X.  D )  e.  _V )
1514adantr 453 . . . . . . 7  |-  ( ( ( A  ~<_*  B  /\  C  ~<_*  D
)  /\  ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  /\  A. c  e.  C  E. d  e.  D  c  =  ( g `  d ) ) )  ->  ( B  X.  D )  e.  _V )
16 pm3.2 436 . . . . . . . . . . . . . . . 16  |-  ( E. b  e.  B  a  =  ( f `  b )  ->  ( E. d  e.  D  c  =  ( g `  d )  ->  ( E. b  e.  B  a  =  ( f `  b )  /\  E. d  e.  D  c  =  ( g `  d ) ) ) )
1716ralimdv 2786 . . . . . . . . . . . . . . 15  |-  ( E. b  e.  B  a  =  ( f `  b )  ->  ( A. c  e.  C  E. d  e.  D  c  =  ( g `  d )  ->  A. c  e.  C  ( E. b  e.  B  a  =  ( f `  b )  /\  E. d  e.  D  c  =  ( g `  d ) ) ) )
1817com12 30 . . . . . . . . . . . . . 14  |-  ( A. c  e.  C  E. d  e.  D  c  =  ( g `  d )  ->  ( E. b  e.  B  a  =  ( f `  b )  ->  A. c  e.  C  ( E. b  e.  B  a  =  ( f `  b )  /\  E. d  e.  D  c  =  ( g `  d ) ) ) )
1918ralimdv 2786 . . . . . . . . . . . . 13  |-  ( A. c  e.  C  E. d  e.  D  c  =  ( g `  d )  ->  ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  ->  A. a  e.  A  A. c  e.  C  ( E. b  e.  B  a  =  ( f `  b )  /\  E. d  e.  D  c  =  ( g `  d ) ) ) )
2019impcom 421 . . . . . . . . . . . 12  |-  ( ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  /\  A. c  e.  C  E. d  e.  D  c  =  ( g `  d ) )  ->  A. a  e.  A  A. c  e.  C  ( E. b  e.  B  a  =  ( f `  b )  /\  E. d  e.  D  c  =  ( g `  d ) ) )
21 pm3.2 436 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  ( f `  b )  ->  (
c  =  ( g `
 d )  -> 
( a  =  ( f `  b )  /\  c  =  ( g `  d ) ) ) )
2221reximdv 2818 . . . . . . . . . . . . . . . . 17  |-  ( a  =  ( f `  b )  ->  ( E. d  e.  D  c  =  ( g `  d )  ->  E. d  e.  D  ( a  =  ( f `  b )  /\  c  =  ( g `  d ) ) ) )
2322com12 30 . . . . . . . . . . . . . . . 16  |-  ( E. d  e.  D  c  =  ( g `  d )  ->  (
a  =  ( f `
 b )  ->  E. d  e.  D  ( a  =  ( f `  b )  /\  c  =  ( g `  d ) ) ) )
2423reximdv 2818 . . . . . . . . . . . . . . 15  |-  ( E. d  e.  D  c  =  ( g `  d )  ->  ( E. b  e.  B  a  =  ( f `  b )  ->  E. b  e.  B  E. d  e.  D  ( a  =  ( f `  b )  /\  c  =  ( g `  d ) ) ) )
2524impcom 421 . . . . . . . . . . . . . 14  |-  ( ( E. b  e.  B  a  =  ( f `  b )  /\  E. d  e.  D  c  =  ( g `  d ) )  ->  E. b  e.  B  E. d  e.  D  ( a  =  ( f `  b )  /\  c  =  ( g `  d ) ) )
2625ralimi 2782 . . . . . . . . . . . . 13  |-  ( A. c  e.  C  ( E. b  e.  B  a  =  ( f `  b )  /\  E. d  e.  D  c  =  ( g `  d ) )  ->  A. c  e.  C  E. b  e.  B  E. d  e.  D  ( a  =  ( f `  b )  /\  c  =  ( g `  d ) ) )
2726ralimi 2782 . . . . . . . . . . . 12  |-  ( A. a  e.  A  A. c  e.  C  ( E. b  e.  B  a  =  ( f `  b )  /\  E. d  e.  D  c  =  ( g `  d ) )  ->  A. a  e.  A  A. c  e.  C  E. b  e.  B  E. d  e.  D  ( a  =  ( f `  b )  /\  c  =  ( g `  d ) ) )
2820, 27syl 16 . . . . . . . . . . 11  |-  ( ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  /\  A. c  e.  C  E. d  e.  D  c  =  ( g `  d ) )  ->  A. a  e.  A  A. c  e.  C  E. b  e.  B  E. d  e.  D  ( a  =  ( f `  b )  /\  c  =  ( g `  d ) ) )
29 eqeq1 2443 . . . . . . . . . . . . . 14  |-  ( x  =  <. a ,  c
>.  ->  ( x  = 
<. ( f `  b
) ,  ( g `
 d ) >.  <->  <.
a ,  c >.  =  <. ( f `  b ) ,  ( g `  d )
>. ) )
30 vex 2960 . . . . . . . . . . . . . . 15  |-  a  e. 
_V
31 vex 2960 . . . . . . . . . . . . . . 15  |-  c  e. 
_V
3230, 31opth 4436 . . . . . . . . . . . . . 14  |-  ( <.
a ,  c >.  =  <. ( f `  b ) ,  ( g `  d )
>. 
<->  ( a  =  ( f `  b )  /\  c  =  ( g `  d ) ) )
3329, 32syl6bb 254 . . . . . . . . . . . . 13  |-  ( x  =  <. a ,  c
>.  ->  ( x  = 
<. ( f `  b
) ,  ( g `
 d ) >.  <->  ( a  =  ( f `
 b )  /\  c  =  ( g `  d ) ) ) )
34332rexbidv 2749 . . . . . . . . . . . 12  |-  ( x  =  <. a ,  c
>.  ->  ( E. b  e.  B  E. d  e.  D  x  =  <. ( f `  b
) ,  ( g `
 d ) >.  <->  E. b  e.  B  E. d  e.  D  (
a  =  ( f `
 b )  /\  c  =  ( g `  d ) ) ) )
3534ralxp 5017 . . . . . . . . . . 11  |-  ( A. x  e.  ( A  X.  C ) E. b  e.  B  E. d  e.  D  x  =  <. ( f `  b
) ,  ( g `
 d ) >.  <->  A. a  e.  A  A. c  e.  C  E. b  e.  B  E. d  e.  D  (
a  =  ( f `
 b )  /\  c  =  ( g `  d ) ) )
3628, 35sylibr 205 . . . . . . . . . 10  |-  ( ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  /\  A. c  e.  C  E. d  e.  D  c  =  ( g `  d ) )  ->  A. x  e.  ( A  X.  C ) E. b  e.  B  E. d  e.  D  x  =  <. ( f `  b ) ,  ( g `  d )
>. )
3736r19.21bi 2805 . . . . . . . . 9  |-  ( ( ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  /\  A. c  e.  C  E. d  e.  D  c  =  ( g `  d ) )  /\  x  e.  ( A  X.  C
) )  ->  E. b  e.  B  E. d  e.  D  x  =  <. ( f `  b
) ,  ( g `
 d ) >.
)
38 vex 2960 . . . . . . . . . . . . . 14  |-  b  e. 
_V
39 vex 2960 . . . . . . . . . . . . . 14  |-  d  e. 
_V
4038, 39op1std 6358 . . . . . . . . . . . . 13  |-  ( y  =  <. b ,  d
>.  ->  ( 1st `  y
)  =  b )
4140fveq2d 5733 . . . . . . . . . . . 12  |-  ( y  =  <. b ,  d
>.  ->  ( f `  ( 1st `  y ) )  =  ( f `
 b ) )
4238, 39op2ndd 6359 . . . . . . . . . . . . 13  |-  ( y  =  <. b ,  d
>.  ->  ( 2nd `  y
)  =  d )
4342fveq2d 5733 . . . . . . . . . . . 12  |-  ( y  =  <. b ,  d
>.  ->  ( g `  ( 2nd `  y ) )  =  ( g `
 d ) )
4441, 43opeq12d 3993 . . . . . . . . . . 11  |-  ( y  =  <. b ,  d
>.  ->  <. ( f `  ( 1st `  y ) ) ,  ( g `
 ( 2nd `  y
) ) >.  =  <. ( f `  b ) ,  ( g `  d ) >. )
4544eqeq2d 2448 . . . . . . . . . 10  |-  ( y  =  <. b ,  d
>.  ->  ( x  = 
<. ( f `  ( 1st `  y ) ) ,  ( g `  ( 2nd `  y ) ) >.  <->  x  =  <. ( f `  b ) ,  ( g `  d ) >. )
)
4645rexxp 5018 . . . . . . . . 9  |-  ( E. y  e.  ( B  X.  D ) x  =  <. ( f `  ( 1st `  y ) ) ,  ( g `
 ( 2nd `  y
) ) >.  <->  E. b  e.  B  E. d  e.  D  x  =  <. ( f `  b
) ,  ( g `
 d ) >.
)
4737, 46sylibr 205 . . . . . . . 8  |-  ( ( ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  /\  A. c  e.  C  E. d  e.  D  c  =  ( g `  d ) )  /\  x  e.  ( A  X.  C
) )  ->  E. y  e.  ( B  X.  D
) x  =  <. ( f `  ( 1st `  y ) ) ,  ( g `  ( 2nd `  y ) )
>. )
4847adantll 696 . . . . . . 7  |-  ( ( ( ( A  ~<_*  B  /\  C  ~<_*  D )  /\  ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  /\  A. c  e.  C  E. d  e.  D  c  =  ( g `  d ) ) )  /\  x  e.  ( A  X.  C ) )  ->  E. y  e.  ( B  X.  D
) x  =  <. ( f `  ( 1st `  y ) ) ,  ( g `  ( 2nd `  y ) )
>. )
4910, 15, 48wdom2d 7549 . . . . . 6  |-  ( ( ( A  ~<_*  B  /\  C  ~<_*  D
)  /\  ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  /\  A. c  e.  C  E. d  e.  D  c  =  ( g `  d ) ) )  ->  ( A  X.  C )  ~<_*  ( B  X.  D
) )
5049expr 600 . . . . 5  |-  ( ( ( A  ~<_*  B  /\  C  ~<_*  D
)  /\  A. a  e.  A  E. b  e.  B  a  =  ( f `  b
) )  ->  ( A. c  e.  C  E. d  e.  D  c  =  ( g `  d )  ->  ( A  X.  C )  ~<_*  ( B  X.  D ) ) )
5150exlimdv 1647 . . . 4  |-  ( ( ( A  ~<_*  B  /\  C  ~<_*  D
)  /\  A. a  e.  A  E. b  e.  B  a  =  ( f `  b
) )  ->  ( E. g A. c  e.  C  E. d  e.  D  c  =  ( g `  d )  ->  ( A  X.  C )  ~<_*  ( B  X.  D
) ) )
5251ex 425 . . 3  |-  ( ( A  ~<_*  B  /\  C  ~<_*  D
)  ->  ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  ->  ( E. g A. c  e.  C  E. d  e.  D  c  =  ( g `  d )  ->  ( A  X.  C )  ~<_*  ( B  X.  D
) ) ) )
5352exlimdv 1647 . 2  |-  ( ( A  ~<_*  B  /\  C  ~<_*  D
)  ->  ( E. f A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  ->  ( E. g A. c  e.  C  E. d  e.  D  c  =  ( g `  d )  ->  ( A  X.  C )  ~<_*  ( B  X.  D
) ) ) )
542, 4, 53mp2d 44 1  |-  ( ( A  ~<_*  B  /\  C  ~<_*  D
)  ->  ( A  X.  C )  ~<_*  ( B  X.  D
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360   E.wex 1551    = wceq 1653    e. wcel 1726   A.wral 2706   E.wrex 2707   _Vcvv 2957   <.cop 3818   class class class wbr 4213    X. cxp 4877   ` cfv 5455   1stc1st 6348   2ndc2nd 6349    ~<_* cwdom 7526
This theorem is referenced by:  hsmexlem3  8309
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-id 4499  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-1st 6350  df-2nd 6351  df-er 6906  df-en 7111  df-dom 7112  df-sdom 7113  df-wdom 7528
  Copyright terms: Public domain W3C validator