MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrge0tsms Unicode version

Theorem xrge0tsms 18339
Description: Any finite or infinite sum in the nonnegative extended reals is uniquely convergent to the supremum of all finite sums. (Contributed by Mario Carneiro, 13-Sep-2015.)
Hypotheses
Ref Expression
xrge0tsms.g  |-  G  =  ( RR* ss  ( 0 [,]  +oo ) )
xrge0tsms.a  |-  ( ph  ->  A  e.  V )
xrge0tsms.f  |-  ( ph  ->  F : A --> ( 0 [,]  +oo ) )
xrge0tsms.s  |-  S  =  sup ( ran  (
s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s
) ) ) , 
RR* ,  <  )
Assertion
Ref Expression
xrge0tsms  |-  ( ph  ->  ( G tsums  F )  =  { S }
)
Distinct variable groups:    A, s    F, s    ph, s    G, s
Allowed substitution hints:    S( s)    V( s)

Proof of Theorem xrge0tsms
Dummy variables  r  u  v  w  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrge0tsms.s . . . . 5  |-  S  =  sup ( ran  (
s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s
) ) ) , 
RR* ,  <  )
2 iccssxr 10732 . . . . . . . . 9  |-  ( 0 [,]  +oo )  C_  RR*
3 xrge0tsms.g . . . . . . . . . . . 12  |-  G  =  ( RR* ss  ( 0 [,]  +oo ) )
4 xrsbas 16390 . . . . . . . . . . . 12  |-  RR*  =  ( Base `  RR* s )
53, 4ressbas2 13199 . . . . . . . . . . 11  |-  ( ( 0 [,]  +oo )  C_ 
RR*  ->  ( 0 [,] 
+oo )  =  (
Base `  G )
)
62, 5ax-mp 8 . . . . . . . . . 10  |-  ( 0 [,]  +oo )  =  (
Base `  G )
7 eqid 2283 . . . . . . . . . . . 12  |-  ( RR* ss  ( RR*  \  {  -oo } ) )  =  (
RR* ss  ( RR*  \  {  -oo } ) )
87xrge0subm 16412 . . . . . . . . . . 11  |-  ( 0 [,]  +oo )  e.  (SubMnd `  ( RR* ss  ( RR*  \  {  -oo } ) ) )
9 xrex 10351 . . . . . . . . . . . . . . 15  |-  RR*  e.  _V
10 difexg 4162 . . . . . . . . . . . . . . 15  |-  ( RR*  e.  _V  ->  ( RR*  \  {  -oo } )  e.  _V )
119, 10ax-mp 8 . . . . . . . . . . . . . 14  |-  ( RR*  \  {  -oo } )  e.  _V
12 simpl 443 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR*  /\  0  <_  x )  ->  x  e.  RR* )
13 ge0nemnf 10502 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR*  /\  0  <_  x )  ->  x  =/=  -oo )
1412, 13jca 518 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR*  /\  0  <_  x )  ->  (
x  e.  RR*  /\  x  =/=  -oo ) )
15 elxrge0 10747 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( 0 [,] 
+oo )  <->  ( x  e.  RR*  /\  0  <_  x ) )
16 eldifsn 3749 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( RR*  \  {  -oo } )  <->  ( x  e.  RR*  /\  x  =/= 
-oo ) )
1714, 15, 163imtr4i 257 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 0 [,] 
+oo )  ->  x  e.  ( RR*  \  {  -oo } ) )
1817ssriv 3184 . . . . . . . . . . . . . 14  |-  ( 0 [,]  +oo )  C_  ( RR*  \  {  -oo }
)
19 ressabs 13206 . . . . . . . . . . . . . 14  |-  ( ( ( RR*  \  {  -oo } )  e.  _V  /\  ( 0 [,]  +oo )  C_  ( RR*  \  {  -oo } ) )  -> 
( ( RR* ss  ( RR*  \  {  -oo }
) )s  ( 0 [,] 
+oo ) )  =  ( RR* ss  ( 0 [,]  +oo ) ) )
2011, 18, 19mp2an 653 . . . . . . . . . . . . 13  |-  ( (
RR* ss  ( RR*  \  {  -oo } ) )s  ( 0 [,]  +oo ) )  =  ( RR* ss  ( 0 [,]  +oo ) )
213, 20eqtr4i 2306 . . . . . . . . . . . 12  |-  G  =  ( ( RR* ss  ( RR*  \  {  -oo }
) )s  ( 0 [,] 
+oo ) )
227xrs10 16410 . . . . . . . . . . . 12  |-  0  =  ( 0g `  ( RR* ss  ( RR*  \  {  -oo } ) ) )
2321, 22subm0 14433 . . . . . . . . . . 11  |-  ( ( 0 [,]  +oo )  e.  (SubMnd `  ( RR* ss  ( RR*  \  {  -oo } ) ) )  -> 
0  =  ( 0g
`  G ) )
248, 23ax-mp 8 . . . . . . . . . 10  |-  0  =  ( 0g `  G )
25 xrge0cmn 16413 . . . . . . . . . . . 12  |-  ( RR* ss  ( 0 [,]  +oo ) )  e. CMnd
263, 25eqeltri 2353 . . . . . . . . . . 11  |-  G  e. CMnd
2726a1i 10 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( ~P A  i^i  Fin ) )  ->  G  e. CMnd )
28 elfpw 7157 . . . . . . . . . . . 12  |-  ( s  e.  ( ~P A  i^i  Fin )  <->  ( s  C_  A  /\  s  e. 
Fin ) )
2928simprbi 450 . . . . . . . . . . 11  |-  ( s  e.  ( ~P A  i^i  Fin )  ->  s  e.  Fin )
3029adantl 452 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( ~P A  i^i  Fin ) )  ->  s  e.  Fin )
31 xrge0tsms.f . . . . . . . . . . 11  |-  ( ph  ->  F : A --> ( 0 [,]  +oo ) )
3228simplbi 446 . . . . . . . . . . 11  |-  ( s  e.  ( ~P A  i^i  Fin )  ->  s  C_  A )
33 fssres 5408 . . . . . . . . . . 11  |-  ( ( F : A --> ( 0 [,]  +oo )  /\  s  C_  A )  ->  ( F  |`  s ) : s --> ( 0 [,] 
+oo ) )
3431, 32, 33syl2an 463 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( ~P A  i^i  Fin ) )  ->  ( F  |`  s ) : s --> ( 0 [,] 
+oo ) )
3530, 34fisuppfi 14450 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( ~P A  i^i  Fin ) )  ->  ( `' ( F  |`  s ) " ( _V  \  { 0 } ) )  e.  Fin )
366, 24, 27, 30, 34, 35gsumcl 15198 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  ( ~P A  i^i  Fin ) )  ->  ( G  gsumg  ( F  |`  s
) )  e.  ( 0 [,]  +oo )
)
372, 36sseldi 3178 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ( ~P A  i^i  Fin ) )  ->  ( G  gsumg  ( F  |`  s
) )  e.  RR* )
38 eqid 2283 . . . . . . . 8  |-  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G 
gsumg  ( F  |`  s ) ) )  =  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s
) ) )
3937, 38fmptd 5684 . . . . . . 7  |-  ( ph  ->  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) : ( ~P A  i^i  Fin ) --> RR* )
40 frn 5395 . . . . . . 7  |-  ( ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s
) ) ) : ( ~P A  i^i  Fin ) --> RR*  ->  ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G 
gsumg  ( F  |`  s ) ) )  C_  RR* )
4139, 40syl 15 . . . . . 6  |-  ( ph  ->  ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) 
C_  RR* )
42 supxrcl 10633 . . . . . 6  |-  ( ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) 
C_  RR*  ->  sup ( ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) ,  RR* ,  <  )  e.  RR* )
4341, 42syl 15 . . . . 5  |-  ( ph  ->  sup ( ran  (
s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s
) ) ) , 
RR* ,  <  )  e. 
RR* )
441, 43syl5eqel 2367 . . . 4  |-  ( ph  ->  S  e.  RR* )
45 0ss 3483 . . . . . . . 8  |-  (/)  C_  A
46 0fin 7087 . . . . . . . 8  |-  (/)  e.  Fin
47 elfpw 7157 . . . . . . . 8  |-  ( (/)  e.  ( ~P A  i^i  Fin )  <->  ( (/)  C_  A  /\  (/)  e.  Fin )
)
4845, 46, 47mpbir2an 886 . . . . . . 7  |-  (/)  e.  ( ~P A  i^i  Fin )
49 0cn 8831 . . . . . . 7  |-  0  e.  CC
50 reseq2 4950 . . . . . . . . . . 11  |-  ( s  =  (/)  ->  ( F  |`  s )  =  ( F  |`  (/) ) )
51 res0 4959 . . . . . . . . . . 11  |-  ( F  |`  (/) )  =  (/)
5250, 51syl6eq 2331 . . . . . . . . . 10  |-  ( s  =  (/)  ->  ( F  |`  s )  =  (/) )
5352oveq2d 5874 . . . . . . . . 9  |-  ( s  =  (/)  ->  ( G 
gsumg  ( F  |`  s ) )  =  ( G 
gsumg  (/) ) )
5424gsum0 14457 . . . . . . . . 9  |-  ( G 
gsumg  (/) )  =  0
5553, 54syl6eq 2331 . . . . . . . 8  |-  ( s  =  (/)  ->  ( G 
gsumg  ( F  |`  s ) )  =  0 )
5638, 55elrnmpt1s 4927 . . . . . . 7  |-  ( (
(/)  e.  ( ~P A  i^i  Fin )  /\  0  e.  CC )  ->  0  e.  ran  (
s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s
) ) ) )
5748, 49, 56mp2an 653 . . . . . 6  |-  0  e.  ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) )
58 supxrub 10643 . . . . . 6  |-  ( ( ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) 
C_  RR*  /\  0  e. 
ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) )  ->  0  <_  sup ( ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G 
gsumg  ( F  |`  s ) ) ) ,  RR* ,  <  ) )
5941, 57, 58sylancl 643 . . . . 5  |-  ( ph  ->  0  <_  sup ( ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) ,  RR* ,  <  )
)
6059, 1syl6breqr 4063 . . . 4  |-  ( ph  ->  0  <_  S )
61 elxrge0 10747 . . . 4  |-  ( S  e.  ( 0 [,] 
+oo )  <->  ( S  e.  RR*  /\  0  <_  S ) )
6244, 60, 61sylanbrc 645 . . 3  |-  ( ph  ->  S  e.  ( 0 [,]  +oo ) )
63 letop 16936 . . . . . 6  |-  (ordTop `  <_  )  e.  Top
64 ovex 5883 . . . . . 6  |-  ( 0 [,]  +oo )  e.  _V
65 elrest 13332 . . . . . 6  |-  ( ( (ordTop `  <_  )  e. 
Top  /\  ( 0 [,]  +oo )  e.  _V )  ->  ( u  e.  ( (ordTop `  <_  )t  ( 0 [,]  +oo )
)  <->  E. v  e.  (ordTop `  <_  ) u  =  ( v  i^i  (
0 [,]  +oo ) ) ) )
6663, 64, 65mp2an 653 . . . . 5  |-  ( u  e.  ( (ordTop `  <_  )t  ( 0 [,]  +oo ) )  <->  E. v  e.  (ordTop `  <_  ) u  =  ( v  i^i  ( 0 [,]  +oo ) ) )
67 inss1 3389 . . . . . . . . 9  |-  ( v  i^i  ( 0 [,] 
+oo ) )  C_  v
6867sseli 3176 . . . . . . . 8  |-  ( S  e.  ( v  i^i  ( 0 [,]  +oo ) )  ->  S  e.  v )
69 simplrl 736 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  ->  v  e.  (ordTop `  <_  ) )
70 reex 8828 . . . . . . . . . . . . . . 15  |-  RR  e.  _V
71 elrestr 13333 . . . . . . . . . . . . . . 15  |-  ( ( (ordTop `  <_  )  e. 
Top  /\  RR  e.  _V  /\  v  e.  (ordTop `  <_  ) )  -> 
( v  i^i  RR )  e.  ( (ordTop ` 
<_  )t  RR ) )
7263, 70, 71mp3an12 1267 . . . . . . . . . . . . . 14  |-  ( v  e.  (ordTop `  <_  )  ->  ( v  i^i 
RR )  e.  ( (ordTop `  <_  )t  RR ) )
7369, 72syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  ->  ( v  i^i  RR )  e.  ( (ordTop ` 
<_  )t  RR ) )
74 eqid 2283 . . . . . . . . . . . . . 14  |-  ( (ordTop `  <_  )t  RR )  =  ( (ordTop `  <_  )t  RR )
7574xrtgioo 18312 . . . . . . . . . . . . 13  |-  ( topGen ` 
ran  (,) )  =  ( (ordTop `  <_  )t  RR )
7673, 75syl6eleqr 2374 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  ->  ( v  i^i  RR )  e.  ( topGen ` 
ran  (,) ) )
77 simplrr 737 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  ->  S  e.  v )
78 simpr 447 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  ->  S  e.  RR )
79 elin 3358 . . . . . . . . . . . . 13  |-  ( S  e.  ( v  i^i 
RR )  <->  ( S  e.  v  /\  S  e.  RR ) )
8077, 78, 79sylanbrc 645 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  ->  S  e.  ( v  i^i  RR ) )
81 tg2 16703 . . . . . . . . . . . 12  |-  ( ( ( v  i^i  RR )  e.  ( topGen ` 
ran  (,) )  /\  S  e.  ( v  i^i  RR ) )  ->  E. u  e.  ran  (,) ( S  e.  u  /\  u  C_  ( v  i^i  RR ) ) )
8276, 80, 81syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  ->  E. u  e.  ran  (,) ( S  e.  u  /\  u  C_  ( v  i^i  RR ) ) )
83 ioof 10741 . . . . . . . . . . . . . 14  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
84 ffn 5389 . . . . . . . . . . . . . 14  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
85 ovelrn 5996 . . . . . . . . . . . . . 14  |-  ( (,) 
Fn  ( RR*  X.  RR* )  ->  ( u  e. 
ran  (,)  <->  E. r  e.  RR*  E. w  e.  RR*  u  =  ( r (,) w ) ) )
8683, 84, 85mp2b 9 . . . . . . . . . . . . 13  |-  ( u  e.  ran  (,)  <->  E. r  e.  RR*  E. w  e. 
RR*  u  =  ( r (,) w ) )
87 simprrl 740 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  ->  S  e.  ( r (,) w
) )
88 eliooord 10710 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( S  e.  ( r (,) w )  ->  (
r  <  S  /\  S  <  w ) )
8987, 88syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  ->  ( r  <  S  /\  S  < 
w ) )
9089simpld 445 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  ->  r  <  S )
9190, 1syl6breq 4062 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  ->  r  <  sup ( ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G 
gsumg  ( F  |`  s ) ) ) ,  RR* ,  <  ) )
9241ad3antrrr 710 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  ->  ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G 
gsumg  ( F  |`  s ) ) )  C_  RR* )
93 simprll 738 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  ->  r  e.  RR* )
94 supxrlub 10644 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) 
C_  RR*  /\  r  e. 
RR* )  ->  (
r  <  sup ( ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) ,  RR* ,  <  )  <->  E. w  e.  ran  (
s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s
) ) ) r  <  w ) )
9592, 93, 94syl2anc 642 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  ->  ( r  <  sup ( ran  (
s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s
) ) ) , 
RR* ,  <  )  <->  E. w  e.  ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) r  <  w ) )
9691, 95mpbid 201 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  ->  E. w  e.  ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) r  <  w )
97 ovex 5883 . . . . . . . . . . . . . . . . . . . 20  |-  ( G 
gsumg  ( F  |`  z ) )  e.  _V
9897rgenw 2610 . . . . . . . . . . . . . . . . . . 19  |-  A. z  e.  ( ~P A  i^i  Fin ) ( G  gsumg  ( F  |`  z ) )  e. 
_V
99 reseq2 4950 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( s  =  z  ->  ( F  |`  s )  =  ( F  |`  z
) )
10099oveq2d 5874 . . . . . . . . . . . . . . . . . . . . 21  |-  ( s  =  z  ->  ( G  gsumg  ( F  |`  s
) )  =  ( G  gsumg  ( F  |`  z
) ) )
101100cbvmptv 4111 . . . . . . . . . . . . . . . . . . . 20  |-  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G 
gsumg  ( F  |`  s ) ) )  =  ( z  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  z
) ) )
102 breq2 4027 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  =  ( G  gsumg  ( F  |`  z ) )  -> 
( r  <  w  <->  r  <  ( G  gsumg  ( F  |`  z ) ) ) )
103101, 102rexrnmpt 5670 . . . . . . . . . . . . . . . . . . 19  |-  ( A. z  e.  ( ~P A  i^i  Fin ) ( G  gsumg  ( F  |`  z
) )  e.  _V  ->  ( E. w  e. 
ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) r  <  w  <->  E. z  e.  ( ~P A  i^i  Fin ) r  <  ( G  gsumg  ( F  |`  z
) ) ) )
10498, 103ax-mp 8 . . . . . . . . . . . . . . . . . 18  |-  ( E. w  e.  ran  (
s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s
) ) ) r  <  w  <->  E. z  e.  ( ~P A  i^i  Fin ) r  <  ( G  gsumg  ( F  |`  z
) ) )
10596, 104sylib 188 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  ->  E. z  e.  ( ~P A  i^i  Fin ) r  <  ( G  gsumg  ( F  |`  z
) ) )
106 simprrr 741 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  ->  ( r (,) w )  C_  (
v  i^i  RR )
)
107106adantr 451 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  (
r (,) w ) 
C_  ( v  i^i 
RR ) )
108 inss1 3389 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( v  i^i  RR )  C_  v
109107, 108syl6ss 3191 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  (
r (,) w ) 
C_  v )
11026a1i 10 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  G  e. CMnd )
111 simprrl 740 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  y  e.  ( ~P A  i^i  Fin ) )
112 elfpw 7157 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( y  e.  ( ~P A  i^i  Fin )  <->  ( y  C_  A  /\  y  e. 
Fin ) )
113112simprbi 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( y  e.  ( ~P A  i^i  Fin )  ->  y  e.  Fin )
114111, 113syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  y  e.  Fin )
115 simpll 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  ->  ph )
116115ad2antrr 706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ph )
117116, 31syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  F : A --> ( 0 [,] 
+oo ) )
118112simplbi 446 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( y  e.  ( ~P A  i^i  Fin )  ->  y  C_  A )
119111, 118syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  y  C_  A )
120 fssres 5408 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( F : A --> ( 0 [,]  +oo )  /\  y  C_  A )  ->  ( F  |`  y ) : y --> ( 0 [,] 
+oo ) )
121117, 119, 120syl2anc 642 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( F  |`  y ) : y --> ( 0 [,] 
+oo ) )
122114, 121fisuppfi 14450 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( `' ( F  |`  y ) " ( _V  \  { 0 } ) )  e.  Fin )
1236, 24, 110, 114, 121, 122gsumcl 15198 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( G  gsumg  ( F  |`  y
) )  e.  ( 0 [,]  +oo )
)
1242, 123sseldi 3178 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( G  gsumg  ( F  |`  y
) )  e.  RR* )
12593adantr 451 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  r  e.  RR* )
126 simprrr 741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  z  C_  y )
127 ssfi 7083 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( y  e.  Fin  /\  z  C_  y )  -> 
z  e.  Fin )
128114, 126, 127syl2anc 642 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  z  e.  Fin )
129126, 119sstrd 3189 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  z  C_  A )
130 fssres 5408 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( F : A --> ( 0 [,]  +oo )  /\  z  C_  A )  ->  ( F  |`  z ) : z --> ( 0 [,] 
+oo ) )
131117, 129, 130syl2anc 642 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( F  |`  z ) : z --> ( 0 [,] 
+oo ) )
132128, 131fisuppfi 14450 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( `' ( F  |`  z ) " ( _V  \  { 0 } ) )  e.  Fin )
1336, 24, 110, 128, 131, 132gsumcl 15198 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( G  gsumg  ( F  |`  z
) )  e.  ( 0 [,]  +oo )
)
1342, 133sseldi 3178 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( G  gsumg  ( F  |`  z
) )  e.  RR* )
135 simprlr 739 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  r  <  ( G  gsumg  ( F  |`  z
) ) )
136 xrge0tsms.a . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ph  ->  A  e.  V )
137116, 136syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  A  e.  V )
1383, 137, 117, 111, 126xrge0gsumle 18338 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( G  gsumg  ( F  |`  z
) )  <_  ( G  gsumg  ( F  |`  y
) ) )
139125, 134, 124, 135, 138xrltletrd 10492 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  r  <  ( G  gsumg  ( F  |`  y
) ) )
140116, 44syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  S  e.  RR* )
141 simprlr 739 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  ->  w  e.  RR* )
142141adantr 451 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  w  e.  RR* )
143116, 41syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) 
C_  RR* )
144 ovex 5883 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( G 
gsumg  ( F  |`  y ) )  e.  _V
145 reseq2 4950 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( s  =  y  ->  ( F  |`  s )  =  ( F  |`  y
) )
146145oveq2d 5874 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( s  =  y  ->  ( G  gsumg  ( F  |`  s
) )  =  ( G  gsumg  ( F  |`  y
) ) )
14738, 146elrnmpt1s 4927 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( y  e.  ( ~P A  i^i  Fin )  /\  ( G  gsumg  ( F  |`  y
) )  e.  _V )  ->  ( G  gsumg  ( F  |`  y ) )  e. 
ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) )
148111, 144, 147sylancl 643 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( G  gsumg  ( F  |`  y
) )  e.  ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) )
149 supxrub 10643 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) 
C_  RR*  /\  ( G 
gsumg  ( F  |`  y ) )  e.  ran  (
s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s
) ) ) )  ->  ( G  gsumg  ( F  |`  y ) )  <_  sup ( ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G 
gsumg  ( F  |`  s ) ) ) ,  RR* ,  <  ) )
150143, 148, 149syl2anc 642 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( G  gsumg  ( F  |`  y
) )  <_  sup ( ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) ,  RR* ,  <  )
)
151150, 1syl6breqr 4063 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( G  gsumg  ( F  |`  y
) )  <_  S
)
15289simprd 449 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  ->  S  <  w )
153152adantr 451 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  S  <  w )
154124, 140, 142, 151, 153xrlelttrd 10491 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( G  gsumg  ( F  |`  y
) )  <  w
)
155 elioo1 10696 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( r  e.  RR*  /\  w  e.  RR* )  ->  (
( G  gsumg  ( F  |`  y
) )  e.  ( r (,) w )  <-> 
( ( G  gsumg  ( F  |`  y ) )  e. 
RR*  /\  r  <  ( G  gsumg  ( F  |`  y
) )  /\  ( G  gsumg  ( F  |`  y
) )  <  w
) ) )
156125, 142, 155syl2anc 642 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  (
( G  gsumg  ( F  |`  y
) )  e.  ( r (,) w )  <-> 
( ( G  gsumg  ( F  |`  y ) )  e. 
RR*  /\  r  <  ( G  gsumg  ( F  |`  y
) )  /\  ( G  gsumg  ( F  |`  y
) )  <  w
) ) )
157124, 139, 154, 156mpbir3and 1135 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( G  gsumg  ( F  |`  y
) )  e.  ( r (,) w ) )
158109, 157sseldd 3181 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( G  gsumg  ( F  |`  y
) )  e.  v )
159 elin 3358 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( G  gsumg  ( F  |`  y
) )  e.  ( v  i^i  ( 0 [,]  +oo ) )  <->  ( ( G  gsumg  ( F  |`  y
) )  e.  v  /\  ( G  gsumg  ( F  |`  y ) )  e.  ( 0 [,]  +oo ) ) )
160158, 123, 159sylanbrc 645 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G 
gsumg  ( F  |`  z ) ) )  /\  (
y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) ) )  ->  ( G  gsumg  ( F  |`  y
) )  e.  ( v  i^i  ( 0 [,]  +oo ) ) )
161160anassrs 629 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  e.  RR )  /\  (
( r  e.  RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  ( r (,) w )  C_  (
v  i^i  RR )
) ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( G  gsumg  ( F  |`  y
) )  e.  ( v  i^i  ( 0 [,]  +oo ) ) )
162161expr 598 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  e.  RR )  /\  (
( r  e.  RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  ( r (,) w )  C_  (
v  i^i  RR )
) ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G  gsumg  ( F  |`  z
) ) ) )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
z  C_  y  ->  ( G  gsumg  ( F  |`  y
) )  e.  ( v  i^i  ( 0 [,]  +oo ) ) ) )
163162ralrimiva 2626 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  <  ( G  gsumg  ( F  |`  z
) ) ) )  ->  A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) )
164163expr 598 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  (
r  <  ( G  gsumg  ( F  |`  z )
)  ->  A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) ) )
165164reximdva 2655 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  ->  ( E. z  e.  ( ~P A  i^i  Fin ) r  <  ( G  gsumg  ( F  |`  z ) )  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin )
( z  C_  y  ->  ( G  gsumg  ( F  |`  y
) )  e.  ( v  i^i  ( 0 [,]  +oo ) ) ) ) )
166105, 165mpd 14 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( ( r  e. 
RR*  /\  w  e.  RR* )  /\  ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) ) ) )  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) )
167166expr 598 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( r  e.  RR*  /\  w  e.  RR* )
)  ->  ( ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) )  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin )
( z  C_  y  ->  ( G  gsumg  ( F  |`  y
) )  e.  ( v  i^i  ( 0 [,]  +oo ) ) ) ) )
168 eleq2 2344 . . . . . . . . . . . . . . . . 17  |-  ( u  =  ( r (,) w )  ->  ( S  e.  u  <->  S  e.  ( r (,) w
) ) )
169 sseq1 3199 . . . . . . . . . . . . . . . . 17  |-  ( u  =  ( r (,) w )  ->  (
u  C_  ( v  i^i  RR )  <->  ( r (,) w )  C_  (
v  i^i  RR )
) )
170168, 169anbi12d 691 . . . . . . . . . . . . . . . 16  |-  ( u  =  ( r (,) w )  ->  (
( S  e.  u  /\  u  C_  ( v  i^i  RR ) )  <-> 
( S  e.  ( r (,) w )  /\  ( r (,) w )  C_  (
v  i^i  RR )
) ) )
171170imbi1d 308 . . . . . . . . . . . . . . 15  |-  ( u  =  ( r (,) w )  ->  (
( ( S  e.  u  /\  u  C_  ( v  i^i  RR ) )  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) )  <->  ( ( S  e.  ( r (,) w )  /\  (
r (,) w ) 
C_  ( v  i^i 
RR ) )  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin )
( z  C_  y  ->  ( G  gsumg  ( F  |`  y
) )  e.  ( v  i^i  ( 0 [,]  +oo ) ) ) ) ) )
172167, 171syl5ibrcom 213 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  /\  ( r  e.  RR*  /\  w  e.  RR* )
)  ->  ( u  =  ( r (,) w )  ->  (
( S  e.  u  /\  u  C_  ( v  i^i  RR ) )  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) ) ) )
173172rexlimdvva 2674 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  ->  ( E. r  e. 
RR*  E. w  e.  RR*  u  =  ( r (,) w )  ->  (
( S  e.  u  /\  u  C_  ( v  i^i  RR ) )  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) ) ) )
17486, 173syl5bi 208 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  ->  ( u  e.  ran  (,) 
->  ( ( S  e.  u  /\  u  C_  ( v  i^i  RR ) )  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) ) ) )
175174rexlimdv 2666 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  ->  ( E. u  e. 
ran  (,) ( S  e.  u  /\  u  C_  ( v  i^i  RR ) )  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) ) )
17682, 175mpd 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  e.  RR )  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) )
177 simplrl 736 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  -> 
v  e.  (ordTop `  <_  ) )
178 simpr 447 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  ->  S  =  +oo )
179 simplrr 737 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  ->  S  e.  v )
180178, 179eqeltrrd 2358 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  ->  +oo  e.  v )
181 pnfnei 16950 . . . . . . . . . . . 12  |-  ( ( v  e.  (ordTop `  <_  )  /\  +oo  e.  v )  ->  E. r  e.  RR  ( r (,] 
+oo )  C_  v
)
182177, 180, 181syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  ->  E. r  e.  RR  ( r (,]  +oo )  C_  v )
183 ltpnf 10463 . . . . . . . . . . . . . . . . . . 19  |-  ( r  e.  RR  ->  r  <  +oo )
184183ad2antrl 708 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  /\  ( r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  ->  r  <  +oo )
185 simplr 731 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  /\  ( r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  ->  S  =  +oo )
186184, 185breqtrrd 4049 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  /\  ( r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  ->  r  <  S
)
187186, 1syl6breq 4062 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  /\  ( r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  ->  r  <  sup ( ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) ,  RR* ,  <  )
)
18841ad3antrrr 710 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  /\  ( r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  ->  ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) 
C_  RR* )
189 rexr 8877 . . . . . . . . . . . . . . . . . 18  |-  ( r  e.  RR  ->  r  e.  RR* )
190189ad2antrl 708 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  /\  ( r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  ->  r  e.  RR* )
191188, 190, 94syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  /\  ( r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  ->  ( r  <  sup ( ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G 
gsumg  ( F  |`  s ) ) ) ,  RR* ,  <  )  <->  E. w  e.  ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) r  <  w ) )
192187, 191mpbid 201 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  /\  ( r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  ->  E. w  e.  ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) r  <  w )
193192, 104sylib 188 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  /\  ( r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  ->  E. z  e.  ( ~P A  i^i  Fin ) r  <  ( G  gsumg  ( F  |`  z
) ) )
194 simprr 733 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  /\  ( r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  ->  ( r (,] 
+oo )  C_  v
)
195194ad2antrr 706 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( r (,]  +oo )  C_  v )
19626a1i 10 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  ->  G  e. CMnd )
197113ad2antrl 708 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
y  e.  Fin )
198 simplll 734 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  /\  ( r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  ->  ph )
199198ad2antrr 706 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  ->  ph )
200199, 31syl 15 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  ->  F : A --> ( 0 [,]  +oo ) )
201118ad2antrl 708 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
y  C_  A )
202200, 201, 120syl2anc 642 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( F  |`  y
) : y --> ( 0 [,]  +oo )
)
203197, 202fisuppfi 14450 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( `' ( F  |`  y ) " ( _V  \  { 0 } ) )  e.  Fin )
2046, 24, 196, 197, 202, 203gsumcl 15198 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( G  gsumg  ( F  |`  y
) )  e.  ( 0 [,]  +oo )
)
2052, 204sseldi 3178 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( G  gsumg  ( F  |`  y
) )  e.  RR* )
206190ad2antrr 706 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
r  e.  RR* )
207 simprr 733 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
z  C_  y )
208197, 207, 127syl2anc 642 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
z  e.  Fin )
209207, 201sstrd 3189 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
z  C_  A )
210200, 209, 130syl2anc 642 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( F  |`  z
) : z --> ( 0 [,]  +oo )
)
211208, 210fisuppfi 14450 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( `' ( F  |`  z ) " ( _V  \  { 0 } ) )  e.  Fin )
2126, 24, 196, 208, 210, 211gsumcl 15198 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( G  gsumg  ( F  |`  z
) )  e.  ( 0 [,]  +oo )
)
2132, 212sseldi 3178 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( G  gsumg  ( F  |`  z
) )  e.  RR* )
214 simplrr 737 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
r  <  ( G  gsumg  ( F  |`  z )
) )
215199, 136syl 15 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  ->  A  e.  V )
216 simprl 732 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
y  e.  ( ~P A  i^i  Fin )
)
2173, 215, 200, 216, 207xrge0gsumle 18338 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( G  gsumg  ( F  |`  z
) )  <_  ( G  gsumg  ( F  |`  y
) ) )
218206, 213, 205, 214, 217xrltletrd 10492 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
r  <  ( G  gsumg  ( F  |`  y )
) )
219 pnfge 10469 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( G  gsumg  ( F  |`  y
) )  e.  RR*  ->  ( G  gsumg  ( F  |`  y
) )  <_  +oo )
220205, 219syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( G  gsumg  ( F  |`  y
) )  <_  +oo )
221 pnfxr 10455 . . . . . . . . . . . . . . . . . . . . . 22  |-  +oo  e.  RR*
222 elioc1 10698 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( r  e.  RR*  /\  +oo  e.  RR* )  ->  (
( G  gsumg  ( F  |`  y
) )  e.  ( r (,]  +oo )  <->  ( ( G  gsumg  ( F  |`  y
) )  e.  RR*  /\  r  <  ( G 
gsumg  ( F  |`  y ) )  /\  ( G 
gsumg  ( F  |`  y ) )  <_  +oo ) ) )
223206, 221, 222sylancl 643 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( ( G  gsumg  ( F  |`  y ) )  e.  ( r (,]  +oo ) 
<->  ( ( G  gsumg  ( F  |`  y ) )  e. 
RR*  /\  r  <  ( G  gsumg  ( F  |`  y
) )  /\  ( G  gsumg  ( F  |`  y
) )  <_  +oo )
) )
224205, 218, 220, 223mpbir3and 1135 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( G  gsumg  ( F  |`  y
) )  e.  ( r (,]  +oo )
)
225195, 224sseldd 3181 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( G  gsumg  ( F  |`  y
) )  e.  v )
226225, 204, 159sylanbrc 645 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  ( y  e.  ( ~P A  i^i  Fin )  /\  z  C_  y ) )  -> 
( G  gsumg  ( F  |`  y
) )  e.  ( v  i^i  ( 0 [,]  +oo ) ) )
227226expr 598 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  /\  S  =  +oo )  /\  (
r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
z  C_  y  ->  ( G  gsumg  ( F  |`  y
) )  e.  ( v  i^i  ( 0 [,]  +oo ) ) ) )
228227ralrimiva 2626 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  /\  ( r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  ( z  e.  ( ~P A  i^i  Fin )  /\  r  < 
( G  gsumg  ( F  |`  z
) ) ) )  ->  A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) )
229228expr 598 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  /\  ( r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  (
r  <  ( G  gsumg  ( F  |`  z )
)  ->  A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) ) )
230229reximdva 2655 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  /\  ( r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  ->  ( E. z  e.  ( ~P A  i^i  Fin ) r  <  ( G  gsumg  ( F  |`  z
) )  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) ) )
231193, 230mpd 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  /\  ( r  e.  RR  /\  ( r (,]  +oo )  C_  v ) )  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) )
232231expr 598 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  /\  r  e.  RR )  ->  ( ( r (,] 
+oo )  C_  v  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) ) )
233232rexlimdva 2667 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  -> 
( E. r  e.  RR  ( r (,] 
+oo )  C_  v  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) ) )
234182, 233mpd 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
v  e.  (ordTop `  <_  )  /\  S  e.  v ) )  /\  S  =  +oo )  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin )
( z  C_  y  ->  ( G  gsumg  ( F  |`  y
) )  e.  ( v  i^i  ( 0 [,]  +oo ) ) ) )
235 ge0nemnf 10502 . . . . . . . . . . . . . 14  |-  ( ( S  e.  RR*  /\  0  <_  S )  ->  S  =/=  -oo )
23644, 60, 235syl2anc 642 . . . . . . . . . . . . 13  |-  ( ph  ->  S  =/=  -oo )
23744, 236jca 518 . . . . . . . . . . . 12  |-  ( ph  ->  ( S  e.  RR*  /\  S  =/=  -oo )
)
238237adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  ->  ( S  e.  RR*  /\  S  =/= 
-oo ) )
239 xrnemnf 10460 . . . . . . . . . . 11  |-  ( ( S  e.  RR*  /\  S  =/=  -oo )  <->  ( S  e.  RR  \/  S  = 
+oo ) )
240238, 239sylib 188 . . . . . . . . . 10  |-  ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  ->  ( S  e.  RR  \/  S  = 
+oo ) )
241176, 234, 240mpjaodan 761 . . . . . . . . 9  |-  ( (
ph  /\  ( v  e.  (ordTop `  <_  )  /\  S  e.  v )
)  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) )
242241expr 598 . . . . . . . 8  |-  ( (
ph  /\  v  e.  (ordTop `  <_  ) )  ->  ( S  e.  v  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) ) )
24368, 242syl5 28 . . . . . . 7  |-  ( (
ph  /\  v  e.  (ordTop `  <_  ) )  ->  ( S  e.  ( v  i^i  ( 0 [,]  +oo ) )  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin )
( z  C_  y  ->  ( G  gsumg  ( F  |`  y
) )  e.  ( v  i^i  ( 0 [,]  +oo ) ) ) ) )
244 eleq2 2344 . . . . . . . 8  |-  ( u  =  ( v  i^i  ( 0 [,]  +oo ) )  ->  ( S  e.  u  <->  S  e.  ( v  i^i  (
0 [,]  +oo ) ) ) )
245 eleq2 2344 . . . . . . . . . 10  |-  ( u  =  ( v  i^i  ( 0 [,]  +oo ) )  ->  (
( G  gsumg  ( F  |`  y
) )  e.  u  <->  ( G  gsumg  ( F  |`  y
) )  e.  ( v  i^i  ( 0 [,]  +oo ) ) ) )
246245imbi2d 307 . . . . . . . . 9  |-  ( u  =  ( v  i^i  ( 0 [,]  +oo ) )  ->  (
( z  C_  y  ->  ( G  gsumg  ( F  |`  y
) )  e.  u
)  <->  ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) ) )
247246rexralbidv 2587 . . . . . . . 8  |-  ( u  =  ( v  i^i  ( 0 [,]  +oo ) )  ->  ( E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin )
( z  C_  y  ->  ( G  gsumg  ( F  |`  y
) )  e.  u
)  <->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) ) )
248244, 247imbi12d 311 . . . . . . 7  |-  ( u  =  ( v  i^i  ( 0 [,]  +oo ) )  ->  (
( S  e.  u  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  u ) )  <->  ( S  e.  ( v  i^i  (
0 [,]  +oo ) )  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  ( v  i^i  (
0 [,]  +oo ) ) ) ) ) )
249243, 248syl5ibrcom 213 . . . . . 6  |-  ( (
ph  /\  v  e.  (ordTop `  <_  ) )  ->  ( u  =  ( v  i^i  ( 0 [,]  +oo ) )  -> 
( S  e.  u  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  u ) ) ) )
250249rexlimdva 2667 . . . . 5  |-  ( ph  ->  ( E. v  e.  (ordTop `  <_  ) u  =  ( v  i^i  ( 0 [,]  +oo ) )  ->  ( S  e.  u  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin )
( z  C_  y  ->  ( G  gsumg  ( F  |`  y
) )  e.  u
) ) ) )
25166, 250syl5bi 208 . . . 4  |-  ( ph  ->  ( u  e.  ( (ordTop `  <_  )t  ( 0 [,]  +oo ) )  -> 
( S  e.  u  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  u ) ) ) )
252251ralrimiv 2625 . . 3  |-  ( ph  ->  A. u  e.  ( (ordTop `  <_  )t  ( 0 [,]  +oo ) ) ( S  e.  u  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin )
( z  C_  y  ->  ( G  gsumg  ( F  |`  y
) )  e.  u
) ) )
253 xrstset 16393 . . . . . . 7  |-  (ordTop `  <_  )  =  (TopSet `  RR* s )
2543, 253resstset 13299 . . . . . 6  |-  ( ( 0 [,]  +oo )  e.  _V  ->  (ordTop `  <_  )  =  (TopSet `  G
) )
25564, 254ax-mp 8 . . . . 5  |-  (ordTop `  <_  )  =  (TopSet `  G )
2566, 255topnval 13339 . . . 4  |-  ( (ordTop `  <_  )t  ( 0 [,] 
+oo ) )  =  ( TopOpen `  G )
257 eqid 2283 . . . 4  |-  ( ~P A  i^i  Fin )  =  ( ~P A  i^i  Fin )
25826a1i 10 . . . 4  |-  ( ph  ->  G  e. CMnd )
259 xrstps 16939 . . . . . . 7  |-  RR* s  e.  TopSp
260 resstps 16917 . . . . . . 7  |-  ( (
RR* s  e.  TopSp  /\  ( 0 [,]  +oo )  e.  _V )  ->  ( RR* ss  ( 0 [,]  +oo ) )  e. 
TopSp )
261259, 64, 260mp2an 653 . . . . . 6  |-  ( RR* ss  ( 0 [,]  +oo ) )  e.  TopSp
2623, 261eqeltri 2353 . . . . 5  |-  G  e. 
TopSp
263262a1i 10 . . . 4  |-  ( ph  ->  G  e.  TopSp )
2646, 256, 257, 258, 263, 136, 31eltsms 17815 . . 3  |-  ( ph  ->  ( S  e.  ( G tsums  F )  <->  ( S  e.  ( 0 [,]  +oo )  /\  A. u  e.  ( (ordTop `  <_  )t  ( 0 [,]  +oo )
) ( S  e.  u  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  u ) ) ) ) )
26562, 252, 264mpbir2and 888 . 2  |-  ( ph  ->  S  e.  ( G tsums 
F ) )
266 letsr 14349 . . . . 5  |-  <_  e.  TosetRel
267 ordthaus 17112 . . . . 5  |-  (  <_  e. 
TosetRel  ->  (ordTop `  <_  )  e. 
Haus )
268266, 267mp1i 11 . . . 4  |-  ( ph  ->  (ordTop `  <_  )  e. 
Haus )
269 resthaus 17096 . . . 4  |-  ( ( (ordTop `  <_  )  e. 
Haus  /\  ( 0 [,] 
+oo )  e.  _V )  ->  ( (ordTop `  <_  )t  ( 0 [,]  +oo ) )  e.  Haus )
270268, 64, 269sylancl 643 . . 3  |-  ( ph  ->  ( (ordTop `  <_  )t  ( 0 [,]  +oo )
)  e.  Haus )
2716, 258, 263, 136, 31, 256, 270haustsms2 17819 . 2  |-  ( ph  ->  ( S  e.  ( G tsums  F )  -> 
( G tsums  F )  =  { S } ) )
272265, 271mpd 14 1  |-  ( ph  ->  ( G tsums  F )  =  { S }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   _Vcvv 2788    \ cdif 3149    i^i cin 3151    C_ wss 3152   (/)c0 3455   ~Pcpw 3625   {csn 3640   class class class wbr 4023    e. cmpt 4077    X. cxp 4687   ran crn 4690    |` cres 4691    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858   Fincfn 6863   supcsup 7193   CCcc 8735   RRcr 8736   0cc0 8737    +oocpnf 8864    -oocmnf 8865   RR*cxr 8866    < clt 8867    <_ cle 8868   (,)cioo 10656   (,]cioc 10657   [,]cicc 10659   Basecbs 13148   ↾s cress 13149  TopSetcts 13214   ↾t crest 13325   topGenctg 13342  ordTopcordt 13398   RR* scxrs 13399   0gc0g 13400    gsumg cgsu 13401    TosetRel ctsr 14302  SubMndcsubmnd 14414  CMndccmn 15089   Topctop 16631   TopSpctps 16634   Hauscha 17036   tsums ctsu 17808
This theorem is referenced by:  xrge0tsms2  18340
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-xadd 10453  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-seq 11047  df-hash 11338  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-tset 13227  df-ple 13228  df-ds 13230  df-rest 13327  df-topn 13328  df-topgen 13344  df-ordt 13402  df-xrs 13403  df-0g 13404  df-gsum 13405  df-mre 13488  df-mrc 13489  df-acs 13491  df-ps 14306  df-tsr 14307  df-mnd 14367  df-submnd 14416  df-cntz 14793  df-cmn 15091  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-ntr 16757  df-nei 16835  df-cn 16957  df-haus 17043  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-tsms 17809
  Copyright terms: Public domain W3C validator