MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrmineq Structured version   Unicode version

Theorem xrmineq 10760
Description: The minimum of two extended reals is equal to the second if the first is bigger. (Contributed by Mario Carneiro, 25-Mar-2015.)
Assertion
Ref Expression
xrmineq  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  B  <_  A )  ->  if ( A  <_  B ,  A ,  B )  =  B )

Proof of Theorem xrmineq
StepHypRef Expression
1 ifid 3763 . 2  |-  if ( A  <_  B ,  B ,  B )  =  B
2 xrletri3 10737 . . . . . . 7  |-  ( ( B  e.  RR*  /\  A  e.  RR* )  ->  ( B  =  A  <->  ( B  <_  A  /\  A  <_  B ) ) )
32ancoms 440 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  =  A  <->  ( B  <_  A  /\  A  <_  B ) ) )
43biimpar 472 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( B  <_  A  /\  A  <_  B ) )  ->  B  =  A )
54anassrs 630 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  B  <_  A )  /\  A  <_  B )  ->  B  =  A )
65ifeq1da 3756 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  B  <_  A )  ->  if ( A  <_  B ,  B ,  B )  =  if ( A  <_  B ,  A ,  B ) )
763impa 1148 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  B  <_  A )  ->  if ( A  <_  B ,  B ,  B )  =  if ( A  <_  B ,  A ,  B ) )
81, 7syl5reqr 2482 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  B  <_  A )  ->  if ( A  <_  B ,  A ,  B )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   ifcif 3731   class class class wbr 4204   RR*cxr 9111    <_ cle 9113
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-pre-lttri 9056  ax-pre-lttrn 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118
  Copyright terms: Public domain W3C validator