MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrre Unicode version

Theorem xrre 10500
Description: A way of proving that an extended real is real. (Contributed by NM, 9-Mar-2006.)
Assertion
Ref Expression
xrre  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  (  -oo  <  A  /\  A  <_  B
) )  ->  A  e.  RR )

Proof of Theorem xrre
StepHypRef Expression
1 simprl 732 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  (  -oo  <  A  /\  A  <_  B
) )  ->  -oo  <  A )
2 ltpnf 10465 . . . . . 6  |-  ( B  e.  RR  ->  B  <  +oo )
32adantl 452 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  B  <  +oo )
4 rexr 8879 . . . . . 6  |-  ( B  e.  RR  ->  B  e.  RR* )
5 pnfxr 10457 . . . . . . 7  |-  +oo  e.  RR*
6 xrlelttr 10489 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  +oo  e.  RR* )  ->  ( ( A  <_  B  /\  B  <  +oo )  ->  A  <  +oo ) )
75, 6mp3an3 1266 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A  <_  B  /\  B  <  +oo )  ->  A  <  +oo )
)
84, 7sylan2 460 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( A  <_  B  /\  B  <  +oo )  ->  A  <  +oo )
)
93, 8mpan2d 655 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( A  <_  B  ->  A  <  +oo ) )
109imp 418 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  A  <_  B
)  ->  A  <  +oo )
1110adantrl 696 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  (  -oo  <  A  /\  A  <_  B
) )  ->  A  <  +oo )
12 xrrebnd 10499 . . 3  |-  ( A  e.  RR*  ->  ( A  e.  RR  <->  (  -oo  <  A  /\  A  <  +oo ) ) )
1312ad2antrr 706 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  (  -oo  <  A  /\  A  <_  B
) )  ->  ( A  e.  RR  <->  (  -oo  <  A  /\  A  <  +oo ) ) )
141, 11, 13mpbir2and 888 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  (  -oo  <  A  /\  A  <_  B
) )  ->  A  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1686   class class class wbr 4025   RRcr 8738    +oocpnf 8866    -oocmnf 8867   RR*cxr 8868    < clt 8869    <_ cle 8870
This theorem is referenced by:  xrrege0  10505  supxrre  10648  infmxrre  10656  caucvgrlem  12147  pcgcd1  12931  tgioo  18304  ovolunlem1a  18857  ovoliunlem1  18863  ioombl1lem2  18918  itg2monolem2  19108  dvferm1lem  19333  radcnvle  19798  psercnlem1  19803  nmobndi  21355  ubthlem3  21453  nmophmi  22613  bdophsi  22678  bdopcoi  22680  orvclteel  23675  itg2addnclem  24933  areacirclem6  24941
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-cnex 8795  ax-resscn 8796  ax-pre-lttri 8813  ax-pre-lttrn 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-po 4316  df-so 4317  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-er 6662  df-en 6866  df-dom 6867  df-sdom 6868  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875
  Copyright terms: Public domain W3C validator