MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zbtwnre Unicode version

Theorem zbtwnre 10267
Description: There is a unique integer between a real number and the number plus one. Exercise 5 of [Apostol] p. 28. (Contributed by NM, 13-Nov-2004.)
Assertion
Ref Expression
zbtwnre  |-  ( A  e.  RR  ->  E! x  e.  ZZ  ( A  <_  x  /\  x  <  ( A  +  1 ) ) )
Distinct variable group:    x, A

Proof of Theorem zbtwnre
StepHypRef Expression
1 zmin 10265 . 2  |-  ( A  e.  RR  ->  E! x  e.  ZZ  ( A  <_  x  /\  A. y  e.  ZZ  ( A  <_  y  ->  x  <_  y ) ) )
2 zre 9981 . . . . . . . . . . . 12  |-  ( y  e.  ZZ  ->  y  e.  RR )
3 zre 9981 . . . . . . . . . . . . . . 15  |-  ( x  e.  ZZ  ->  x  e.  RR )
4 peano2rem 9067 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  (
x  -  1 )  e.  RR )
53, 4syl 17 . . . . . . . . . . . . . 14  |-  ( x  e.  ZZ  ->  (
x  -  1 )  e.  RR )
6 ltletr 8867 . . . . . . . . . . . . . 14  |-  ( ( ( x  -  1 )  e.  RR  /\  A  e.  RR  /\  y  e.  RR )  ->  (
( ( x  - 
1 )  <  A  /\  A  <_  y )  ->  ( x  - 
1 )  <  y
) )
75, 6syl3an1 1220 . . . . . . . . . . . . 13  |-  ( ( x  e.  ZZ  /\  A  e.  RR  /\  y  e.  RR )  ->  (
( ( x  - 
1 )  <  A  /\  A  <_  y )  ->  ( x  - 
1 )  <  y
) )
873expa 1156 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  y  e.  RR )  ->  ( ( ( x  -  1 )  <  A  /\  A  <_  y )  ->  (
x  -  1 )  <  y ) )
92, 8sylan2 462 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  y  e.  ZZ )  ->  ( ( ( x  -  1 )  <  A  /\  A  <_  y )  ->  (
x  -  1 )  <  y ) )
10 zlem1lt 10022 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  <_  y  <->  ( x  -  1 )  <  y ) )
1110adantlr 698 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  y  e.  ZZ )  ->  ( x  <_ 
y  <->  ( x  - 
1 )  <  y
) )
129, 11sylibrd 227 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  y  e.  ZZ )  ->  ( ( ( x  -  1 )  <  A  /\  A  <_  y )  ->  x  <_  y ) )
1312exp4b 593 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( y  e.  ZZ  ->  ( ( x  - 
1 )  <  A  ->  ( A  <_  y  ->  x  <_  y )
) ) )
1413com23 74 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( ( x  - 
1 )  <  A  ->  ( y  e.  ZZ  ->  ( A  <_  y  ->  x  <_  y )
) ) )
1514ralrimdv 2605 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( ( x  - 
1 )  <  A  ->  A. y  e.  ZZ  ( A  <_  y  ->  x  <_  y ) ) )
165ltnrd 8907 . . . . . . . . . . 11  |-  ( x  e.  ZZ  ->  -.  ( x  -  1
)  <  ( x  -  1 ) )
17 peano2zm 10015 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  (
x  -  1 )  e.  ZZ )
18 zlem1lt 10022 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  ( x  -  1
)  e.  ZZ )  ->  ( x  <_ 
( x  -  1 )  <->  ( x  - 
1 )  <  (
x  -  1 ) ) )
1917, 18mpdan 652 . . . . . . . . . . 11  |-  ( x  e.  ZZ  ->  (
x  <_  ( x  -  1 )  <->  ( x  -  1 )  < 
( x  -  1 ) ) )
2016, 19mtbird 294 . . . . . . . . . 10  |-  ( x  e.  ZZ  ->  -.  x  <_  ( x  - 
1 ) )
2120ad2antrr 709 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y ) )  ->  -.  x  <_  ( x  - 
1 ) )
22 lenlt 8855 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( x  -  1
)  e.  RR )  ->  ( A  <_ 
( x  -  1 )  <->  -.  ( x  -  1 )  < 
A ) )
235, 22sylan2 462 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  x  e.  ZZ )  ->  ( A  <_  (
x  -  1 )  <->  -.  ( x  -  1 )  <  A ) )
2423ancoms 441 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( A  <_  (
x  -  1 )  <->  -.  ( x  -  1 )  <  A ) )
2524adantr 453 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y ) )  ->  ( A  <_  ( x  - 
1 )  <->  -.  (
x  -  1 )  <  A ) )
26 breq2 3987 . . . . . . . . . . . . . . 15  |-  ( y  =  ( x  - 
1 )  ->  ( A  <_  y  <->  A  <_  ( x  -  1 ) ) )
27 breq2 3987 . . . . . . . . . . . . . . 15  |-  ( y  =  ( x  - 
1 )  ->  (
x  <_  y  <->  x  <_  ( x  -  1 ) ) )
2826, 27imbi12d 313 . . . . . . . . . . . . . 14  |-  ( y  =  ( x  - 
1 )  ->  (
( A  <_  y  ->  x  <_  y )  <->  ( A  <_  ( x  -  1 )  ->  x  <_  ( x  - 
1 ) ) ) )
2928rcla4v 2848 . . . . . . . . . . . . 13  |-  ( ( x  -  1 )  e.  ZZ  ->  ( A. y  e.  ZZ  ( A  <_  y  ->  x  <_  y )  -> 
( A  <_  (
x  -  1 )  ->  x  <_  (
x  -  1 ) ) ) )
3017, 29syl 17 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  ( A. y  e.  ZZ  ( A  <_  y  ->  x  <_  y )  -> 
( A  <_  (
x  -  1 )  ->  x  <_  (
x  -  1 ) ) ) )
3130imp 420 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  A. y  e.  ZZ  ( A  <_  y  ->  x  <_  y ) )  -> 
( A  <_  (
x  -  1 )  ->  x  <_  (
x  -  1 ) ) )
3231adantlr 698 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y ) )  ->  ( A  <_  ( x  - 
1 )  ->  x  <_  ( x  -  1 ) ) )
3325, 32sylbird 228 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y ) )  ->  ( -.  ( x  -  1 )  <  A  ->  x  <_  ( x  - 
1 ) ) )
3421, 33mt3d 119 . . . . . . . 8  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y ) )  ->  (
x  -  1 )  <  A )
3534ex 425 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y )  ->  ( x  -  1 )  < 
A ) )
3615, 35impbid 185 . . . . . 6  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( ( x  - 
1 )  <  A  <->  A. y  e.  ZZ  ( A  <_  y  ->  x  <_  y ) ) )
37 1re 8791 . . . . . . . 8  |-  1  e.  RR
38 ltsubadd 9198 . . . . . . . 8  |-  ( ( x  e.  RR  /\  1  e.  RR  /\  A  e.  RR )  ->  (
( x  -  1 )  <  A  <->  x  <  ( A  +  1 ) ) )
3937, 38mp3an2 1270 . . . . . . 7  |-  ( ( x  e.  RR  /\  A  e.  RR )  ->  ( ( x  - 
1 )  <  A  <->  x  <  ( A  + 
1 ) ) )
403, 39sylan 459 . . . . . 6  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( ( x  - 
1 )  <  A  <->  x  <  ( A  + 
1 ) ) )
4136, 40bitr3d 248 . . . . 5  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y )  <->  x  <  ( A  +  1 ) ) )
4241ancoms 441 . . . 4  |-  ( ( A  e.  RR  /\  x  e.  ZZ )  ->  ( A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y )  <->  x  <  ( A  +  1 ) ) )
4342anbi2d 687 . . 3  |-  ( ( A  e.  RR  /\  x  e.  ZZ )  ->  ( ( A  <_  x  /\  A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y ) )  <->  ( A  <_  x  /\  x  < 
( A  +  1 ) ) ) )
4443reubidva 2696 . 2  |-  ( A  e.  RR  ->  ( E! x  e.  ZZ  ( A  <_  x  /\  A. y  e.  ZZ  ( A  <_  y  ->  x  <_  y ) )  <->  E! x  e.  ZZ  ( A  <_  x  /\  x  <  ( A  +  1 ) ) ) )
451, 44mpbid 203 1  |-  ( A  e.  RR  ->  E! x  e.  ZZ  ( A  <_  x  /\  x  <  ( A  +  1 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2516   E!wreu 2518   class class class wbr 3983  (class class class)co 5778   RRcr 8690   1c1 8692    + caddc 8694    < clt 8821    <_ cle 8822    - cmin 8991   ZZcz 9977
This theorem is referenced by:  rebtwnz  10268  qbtwnre  10478
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470  ax-cnex 8747  ax-resscn 8748  ax-1cn 8749  ax-icn 8750  ax-addcl 8751  ax-addrcl 8752  ax-mulcl 8753  ax-mulrcl 8754  ax-mulcom 8755  ax-addass 8756  ax-mulass 8757  ax-distr 8758  ax-i2m1 8759  ax-1ne0 8760  ax-1rid 8761  ax-rnegex 8762  ax-rrecex 8763  ax-cnre 8764  ax-pre-lttri 8765  ax-pre-lttrn 8766  ax-pre-ltadd 8767  ax-pre-mulgt0 8768  ax-pre-sup 8769
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rmo 2524  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-iun 3867  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-om 4615  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-iota 6211  df-riota 6258  df-recs 6342  df-rdg 6377  df-er 6614  df-en 6818  df-dom 6819  df-sdom 6820  df-sup 7148  df-pnf 8823  df-mnf 8824  df-xr 8825  df-ltxr 8826  df-le 8827  df-sub 8993  df-neg 8994  df-n 9701  df-n0 9919  df-z 9978  df-uz 10184
  Copyright terms: Public domain W3C validator