MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zeo2 Unicode version

Theorem zeo2 10345
Description: An integer is even or odd but not both. (Contributed by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
zeo2  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  e.  ZZ  <->  -.  (
( N  +  1 )  /  2 )  e.  ZZ ) )

Proof of Theorem zeo2
StepHypRef Expression
1 zcn 10276 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  CC )
2 peano2cn 9227 . . . . . 6  |-  ( N  e.  CC  ->  ( N  +  1 )  e.  CC )
31, 2syl 16 . . . . 5  |-  ( N  e.  ZZ  ->  ( N  +  1 )  e.  CC )
4 2cn 10059 . . . . . 6  |-  2  e.  CC
54a1i 11 . . . . 5  |-  ( N  e.  ZZ  ->  2  e.  CC )
6 2ne0 10072 . . . . . 6  |-  2  =/=  0
76a1i 11 . . . . 5  |-  ( N  e.  ZZ  ->  2  =/=  0 )
83, 5, 7divcan2d 9781 . . . 4  |-  ( N  e.  ZZ  ->  (
2  x.  ( ( N  +  1 )  /  2 ) )  =  ( N  + 
1 ) )
91, 5, 7divcan2d 9781 . . . . 5  |-  ( N  e.  ZZ  ->  (
2  x.  ( N  /  2 ) )  =  N )
109oveq1d 6087 . . . 4  |-  ( N  e.  ZZ  ->  (
( 2  x.  ( N  /  2 ) )  +  1 )  =  ( N  +  1 ) )
118, 10eqtr4d 2470 . . 3  |-  ( N  e.  ZZ  ->  (
2  x.  ( ( N  +  1 )  /  2 ) )  =  ( ( 2  x.  ( N  / 
2 ) )  +  1 ) )
12 zneo 10341 . . . . 5  |-  ( ( ( ( N  + 
1 )  /  2
)  e.  ZZ  /\  ( N  /  2
)  e.  ZZ )  ->  ( 2  x.  ( ( N  + 
1 )  /  2
) )  =/=  (
( 2  x.  ( N  /  2 ) )  +  1 ) )
1312expcom 425 . . . 4  |-  ( ( N  /  2 )  e.  ZZ  ->  (
( ( N  + 
1 )  /  2
)  e.  ZZ  ->  ( 2  x.  ( ( N  +  1 )  /  2 ) )  =/=  ( ( 2  x.  ( N  / 
2 ) )  +  1 ) ) )
1413necon2bd 2647 . . 3  |-  ( ( N  /  2 )  e.  ZZ  ->  (
( 2  x.  (
( N  +  1 )  /  2 ) )  =  ( ( 2  x.  ( N  /  2 ) )  +  1 )  ->  -.  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
1511, 14syl5com 28 . 2  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  e.  ZZ  ->  -.  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
16 zeo 10344 . . . 4  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  e.  ZZ  \/  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
1716ord 367 . . 3  |-  ( N  e.  ZZ  ->  ( -.  ( N  /  2
)  e.  ZZ  ->  ( ( N  +  1 )  /  2 )  e.  ZZ ) )
1817con1d 118 . 2  |-  ( N  e.  ZZ  ->  ( -.  ( ( N  + 
1 )  /  2
)  e.  ZZ  ->  ( N  /  2 )  e.  ZZ ) )
1915, 18impbid 184 1  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  e.  ZZ  <->  -.  (
( N  +  1 )  /  2 )  e.  ZZ ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    = wceq 1652    e. wcel 1725    =/= wne 2598  (class class class)co 6072   CCcc 8977   0cc0 8979   1c1 8980    + caddc 8982    x. cmul 8984    / cdiv 9666   2c2 10038   ZZcz 10271
This theorem is referenced by:  zesq  11490
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-riota 6540  df-recs 6624  df-rdg 6659  df-er 6896  df-en 7101  df-dom 7102  df-sdom 7103  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-div 9667  df-nn 9990  df-2 10047  df-n0 10211  df-z 10272
  Copyright terms: Public domain W3C validator