MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zesq Unicode version

Theorem zesq 11317
Description: An integer is even iff its square is even. (Contributed by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
zesq  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  e.  ZZ  <->  ( ( N ^ 2 )  / 
2 )  e.  ZZ ) )

Proof of Theorem zesq
StepHypRef Expression
1 zcn 10121 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  CC )
2 sqval 11256 . . . . . . 7  |-  ( N  e.  CC  ->  ( N ^ 2 )  =  ( N  x.  N
) )
31, 2syl 15 . . . . . 6  |-  ( N  e.  ZZ  ->  ( N ^ 2 )  =  ( N  x.  N
) )
43oveq1d 5960 . . . . 5  |-  ( N  e.  ZZ  ->  (
( N ^ 2 )  /  2 )  =  ( ( N  x.  N )  / 
2 ) )
5 2cn 9906 . . . . . . 7  |-  2  e.  CC
65a1i 10 . . . . . 6  |-  ( N  e.  ZZ  ->  2  e.  CC )
7 2ne0 9919 . . . . . . 7  |-  2  =/=  0
87a1i 10 . . . . . 6  |-  ( N  e.  ZZ  ->  2  =/=  0 )
91, 1, 6, 8divassd 9661 . . . . 5  |-  ( N  e.  ZZ  ->  (
( N  x.  N
)  /  2 )  =  ( N  x.  ( N  /  2
) ) )
104, 9eqtrd 2390 . . . 4  |-  ( N  e.  ZZ  ->  (
( N ^ 2 )  /  2 )  =  ( N  x.  ( N  /  2
) ) )
1110adantr 451 . . 3  |-  ( ( N  e.  ZZ  /\  ( N  /  2
)  e.  ZZ )  ->  ( ( N ^ 2 )  / 
2 )  =  ( N  x.  ( N  /  2 ) ) )
12 zmulcl 10158 . . 3  |-  ( ( N  e.  ZZ  /\  ( N  /  2
)  e.  ZZ )  ->  ( N  x.  ( N  /  2
) )  e.  ZZ )
1311, 12eqeltrd 2432 . 2  |-  ( ( N  e.  ZZ  /\  ( N  /  2
)  e.  ZZ )  ->  ( ( N ^ 2 )  / 
2 )  e.  ZZ )
141adantr 451 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  N  e.  CC )
15 sqcl 11259 . . . . . . . . . . 11  |-  ( N  e.  CC  ->  ( N ^ 2 )  e.  CC )
1614, 15syl 15 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( N ^
2 )  e.  CC )
17 peano2cn 9074 . . . . . . . . . 10  |-  ( ( N ^ 2 )  e.  CC  ->  (
( N ^ 2 )  +  1 )  e.  CC )
1816, 17syl 15 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( N ^ 2 )  +  1 )  e.  CC )
1918halfcld 10048 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( N ^ 2 )  +  1 )  / 
2 )  e.  CC )
2019, 14pncand 9248 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( ( ( N ^
2 )  +  1 )  /  2 )  +  N )  -  N )  =  ( ( ( N ^
2 )  +  1 )  /  2 ) )
21 binom21 11312 . . . . . . . . . . . . 13  |-  ( N  e.  CC  ->  (
( N  +  1 ) ^ 2 )  =  ( ( ( N ^ 2 )  +  ( 2  x.  N ) )  +  1 ) )
2214, 21syl 15 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( N  +  1 ) ^
2 )  =  ( ( ( N ^
2 )  +  ( 2  x.  N ) )  +  1 ) )
23 peano2cn 9074 . . . . . . . . . . . . . 14  |-  ( N  e.  CC  ->  ( N  +  1 )  e.  CC )
2414, 23syl 15 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( N  + 
1 )  e.  CC )
25 sqval 11256 . . . . . . . . . . . . 13  |-  ( ( N  +  1 )  e.  CC  ->  (
( N  +  1 ) ^ 2 )  =  ( ( N  +  1 )  x.  ( N  +  1 ) ) )
2624, 25syl 15 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( N  +  1 ) ^
2 )  =  ( ( N  +  1 )  x.  ( N  +  1 ) ) )
27 mulcl 8911 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  CC  /\  N  e.  CC )  ->  ( 2  x.  N
)  e.  CC )
285, 14, 27sylancr 644 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( 2  x.  N )  e.  CC )
29 ax-1cn 8885 . . . . . . . . . . . . . 14  |-  1  e.  CC
3029a1i 10 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  1  e.  CC )
3116, 28, 30add32d 9124 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( N ^ 2 )  +  ( 2  x.  N ) )  +  1 )  =  ( ( ( N ^
2 )  +  1 )  +  ( 2  x.  N ) ) )
3222, 26, 313eqtr3d 2398 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( N  +  1 )  x.  ( N  +  1 ) )  =  ( ( ( N ^
2 )  +  1 )  +  ( 2  x.  N ) ) )
3332oveq1d 5960 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( N  +  1 )  x.  ( N  + 
1 ) )  / 
2 )  =  ( ( ( ( N ^ 2 )  +  1 )  +  ( 2  x.  N ) )  /  2 ) )
345a1i 10 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  2  e.  CC )
357a1i 10 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  2  =/=  0
)
3624, 24, 34, 35divassd 9661 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( N  +  1 )  x.  ( N  + 
1 ) )  / 
2 )  =  ( ( N  +  1 )  x.  ( ( N  +  1 )  /  2 ) ) )
3718, 28, 34, 35divdird 9664 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( ( N ^ 2 )  +  1 )  +  ( 2  x.  N ) )  / 
2 )  =  ( ( ( ( N ^ 2 )  +  1 )  /  2
)  +  ( ( 2  x.  N )  /  2 ) ) )
3814, 34, 35divcan3d 9631 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( 2  x.  N )  / 
2 )  =  N )
3938oveq2d 5961 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( ( N ^ 2 )  +  1 )  /  2 )  +  ( ( 2  x.  N )  /  2
) )  =  ( ( ( ( N ^ 2 )  +  1 )  /  2
)  +  N ) )
4037, 39eqtrd 2390 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( ( N ^ 2 )  +  1 )  +  ( 2  x.  N ) )  / 
2 )  =  ( ( ( ( N ^ 2 )  +  1 )  /  2
)  +  N ) )
4133, 36, 403eqtr3d 2398 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( N  +  1 )  x.  ( ( N  + 
1 )  /  2
) )  =  ( ( ( ( N ^ 2 )  +  1 )  /  2
)  +  N ) )
42 peano2z 10152 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  ( N  +  1 )  e.  ZZ )
43 zmulcl 10158 . . . . . . . . . 10  |-  ( ( ( N  +  1 )  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( N  +  1 )  x.  ( ( N  + 
1 )  /  2
) )  e.  ZZ )
4442, 43sylan 457 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( N  +  1 )  x.  ( ( N  + 
1 )  /  2
) )  e.  ZZ )
4541, 44eqeltrrd 2433 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( ( N ^ 2 )  +  1 )  /  2 )  +  N )  e.  ZZ )
46 simpl 443 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  N  e.  ZZ )
4745, 46zsubcld 10214 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( ( ( N ^
2 )  +  1 )  /  2 )  +  N )  -  N )  e.  ZZ )
4820, 47eqeltrrd 2433 . . . . . 6  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( N ^ 2 )  +  1 )  / 
2 )  e.  ZZ )
4948ex 423 . . . . 5  |-  ( N  e.  ZZ  ->  (
( ( N  + 
1 )  /  2
)  e.  ZZ  ->  ( ( ( N ^
2 )  +  1 )  /  2 )  e.  ZZ ) )
5049con3d 125 . . . 4  |-  ( N  e.  ZZ  ->  ( -.  ( ( ( N ^ 2 )  +  1 )  /  2
)  e.  ZZ  ->  -.  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
51 zsqcl 11267 . . . . 5  |-  ( N  e.  ZZ  ->  ( N ^ 2 )  e.  ZZ )
52 zeo2 10190 . . . . 5  |-  ( ( N ^ 2 )  e.  ZZ  ->  (
( ( N ^
2 )  /  2
)  e.  ZZ  <->  -.  (
( ( N ^
2 )  +  1 )  /  2 )  e.  ZZ ) )
5351, 52syl 15 . . . 4  |-  ( N  e.  ZZ  ->  (
( ( N ^
2 )  /  2
)  e.  ZZ  <->  -.  (
( ( N ^
2 )  +  1 )  /  2 )  e.  ZZ ) )
54 zeo2 10190 . . . 4  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  e.  ZZ  <->  -.  (
( N  +  1 )  /  2 )  e.  ZZ ) )
5550, 53, 543imtr4d 259 . . 3  |-  ( N  e.  ZZ  ->  (
( ( N ^
2 )  /  2
)  e.  ZZ  ->  ( N  /  2 )  e.  ZZ ) )
5655imp 418 . 2  |-  ( ( N  e.  ZZ  /\  ( ( N ^
2 )  /  2
)  e.  ZZ )  ->  ( N  / 
2 )  e.  ZZ )
5713, 56impbida 805 1  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  e.  ZZ  <->  ( ( N ^ 2 )  / 
2 )  e.  ZZ ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1642    e. wcel 1710    =/= wne 2521  (class class class)co 5945   CCcc 8825   0cc0 8827   1c1 8828    + caddc 8830    x. cmul 8832    - cmin 9127    / cdiv 9513   2c2 9885   ZZcz 10116   ^cexp 11197
This theorem is referenced by:  nnesq  11318  sqr2irrlem  12623
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-er 6747  df-en 6952  df-dom 6953  df-sdom 6954  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-div 9514  df-nn 9837  df-2 9894  df-n0 10058  df-z 10117  df-uz 10323  df-seq 11139  df-exp 11198
  Copyright terms: Public domain W3C validator