MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfcndreg Structured version   Unicode version

Theorem zfcndreg 8497
Description: Axiom of Regularity ax-reg 7563, reproved from conditionless ZFC axioms. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.)
Assertion
Ref Expression
zfcndreg  |-  ( E. y  y  e.  x  ->  E. y ( y  e.  x  /\  A. z ( z  e.  y  ->  -.  z  e.  x ) ) )
Distinct variable group:    x, y, z

Proof of Theorem zfcndreg
StepHypRef Expression
1 nfe1 1748 . 2  |-  F/ y E. y ( y  e.  x  /\  A. z ( z  e.  y  ->  -.  z  e.  x ) )
2 axregnd 8484 . 2  |-  ( y  e.  x  ->  E. y
( y  e.  x  /\  A. z ( z  e.  y  ->  -.  z  e.  x )
) )
31, 2exlimi 1822 1  |-  ( E. y  y  e.  x  ->  E. y ( y  e.  x  /\  A. z ( z  e.  y  ->  -.  z  e.  x ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360   A.wal 1550   E.wex 1551    e. wcel 1726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406  ax-reg 7563
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-v 2960  df-dif 3325  df-un 3327  df-nul 3631  df-sn 3822  df-pr 3823
  Copyright terms: Public domain W3C validator