MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfcndreg Unicode version

Theorem zfcndreg 8426
Description: Axiom of Regularity ax-reg 7494, reproved from conditionless ZFC axioms. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.)
Assertion
Ref Expression
zfcndreg  |-  ( E. y  y  e.  x  ->  E. y ( y  e.  x  /\  A. z ( z  e.  y  ->  -.  z  e.  x ) ) )
Distinct variable group:    x, y, z

Proof of Theorem zfcndreg
StepHypRef Expression
1 nfe1 1739 . 2  |-  F/ y E. y ( y  e.  x  /\  A. z ( z  e.  y  ->  -.  z  e.  x ) )
2 axregnd 8413 . 2  |-  ( y  e.  x  ->  E. y
( y  e.  x  /\  A. z ( z  e.  y  ->  -.  z  e.  x )
) )
31, 2exlimi 1811 1  |-  ( E. y  y  e.  x  ->  E. y ( y  e.  x  /\  A. z ( z  e.  y  ->  -.  z  e.  x ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359   A.wal 1546   E.wex 1547    e. wcel 1717
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pr 4345  ax-reg 7494
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-v 2902  df-dif 3267  df-un 3269  df-nul 3573  df-sn 3764  df-pr 3765
  Copyright terms: Public domain W3C validator