MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfinf2 Structured version   Unicode version

Theorem zfinf2 7589
Description: A standard version of the Axiom of Infinity, using definitions to abbreviate. Axiom Inf of [BellMachover] p. 472. (See ax-inf2 7588 for the unabbreviated version.) (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
zfinf2  |-  E. x
( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )
Distinct variable group:    x, y

Proof of Theorem zfinf2
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-inf2 7588 . 2  |-  E. x
( E. y ( y  e.  x  /\  A. z  -.  z  e.  y )  /\  A. y ( y  e.  x  ->  E. z
( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) ) )
2 0el 3636 . . . . 5  |-  ( (/)  e.  x  <->  E. y  e.  x  A. z  -.  z  e.  y )
3 df-rex 2703 . . . . 5  |-  ( E. y  e.  x  A. z  -.  z  e.  y  <->  E. y ( y  e.  x  /\  A. z  -.  z  e.  y
) )
42, 3bitri 241 . . . 4  |-  ( (/)  e.  x  <->  E. y ( y  e.  x  /\  A. z  -.  z  e.  y ) )
5 sucel 4646 . . . . . . 7  |-  ( suc  y  e.  x  <->  E. z  e.  x  A. w
( w  e.  z  <-> 
( w  e.  y  \/  w  =  y ) ) )
6 df-rex 2703 . . . . . . 7  |-  ( E. z  e.  x  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) )  <->  E. z
( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) )
75, 6bitri 241 . . . . . 6  |-  ( suc  y  e.  x  <->  E. z
( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) )
87ralbii 2721 . . . . 5  |-  ( A. y  e.  x  suc  y  e.  x  <->  A. y  e.  x  E. z
( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) )
9 df-ral 2702 . . . . 5  |-  ( A. y  e.  x  E. z ( z  e.  x  /\  A. w
( w  e.  z  <-> 
( w  e.  y  \/  w  =  y ) ) )  <->  A. y
( y  e.  x  ->  E. z ( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) ) )
108, 9bitri 241 . . . 4  |-  ( A. y  e.  x  suc  y  e.  x  <->  A. y
( y  e.  x  ->  E. z ( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) ) )
114, 10anbi12i 679 . . 3  |-  ( (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )  <->  ( E. y ( y  e.  x  /\  A. z  -.  z  e.  y )  /\  A. y
( y  e.  x  ->  E. z ( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) ) ) )
1211exbii 1592 . 2  |-  ( E. x ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
)  <->  E. x ( E. y ( y  e.  x  /\  A. z  -.  z  e.  y
)  /\  A. y
( y  e.  x  ->  E. z ( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) ) ) )
131, 12mpbir 201 1  |-  E. x
( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359   A.wal 1549   E.wex 1550    e. wcel 1725   A.wral 2697   E.wrex 2698   (/)c0 3620   suc csuc 4575
This theorem is referenced by:  omex  7590
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-inf2 7588
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-v 2950  df-dif 3315  df-un 3317  df-nul 3621  df-sn 3812  df-suc 4579
  Copyright terms: Public domain W3C validator