MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfpair Unicode version

Theorem zfpair 4212
Description: The Axiom of Pairing of Zermelo-Fraenkel set theory. Axiom 2 of [TakeutiZaring] p. 15. In some textbooks this is stated as a separate axiom; here we show it is redundant since it can be derived from the other axioms.

This theorem should not be referenced by any proof other than axpr 4213. Instead, use zfpair2 4215 below so that the uses of the Axiom of Pairing can be more easily identified. (Contributed by NM, 18-Oct-1995.) (New usage is discouraged.)

Assertion
Ref Expression
zfpair  |-  { x ,  y }  e.  _V

Proof of Theorem zfpair
Dummy variables  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfpr2 3656 . 2  |-  { x ,  y }  =  { w  |  (
w  =  x  \/  w  =  y ) }
2 19.43 1592 . . . . 5  |-  ( E. z ( ( z  =  (/)  /\  w  =  x )  \/  (
z  =  { (/) }  /\  w  =  y ) )  <->  ( E. z ( z  =  (/)  /\  w  =  x )  \/  E. z
( z  =  { (/)
}  /\  w  =  y ) ) )
3 prlem2 929 . . . . . 6  |-  ( ( ( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y ) )  <-> 
( ( z  =  (/)  \/  z  =  { (/)
} )  /\  (
( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y ) ) ) )
43exbii 1569 . . . . 5  |-  ( E. z ( ( z  =  (/)  /\  w  =  x )  \/  (
z  =  { (/) }  /\  w  =  y ) )  <->  E. z
( ( z  =  (/)  \/  z  =  { (/)
} )  /\  (
( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y ) ) ) )
5 0ex 4150 . . . . . . . 8  |-  (/)  e.  _V
65isseti 2794 . . . . . . 7  |-  E. z 
z  =  (/)
7 19.41v 1842 . . . . . . 7  |-  ( E. z ( z  =  (/)  /\  w  =  x )  <->  ( E. z 
z  =  (/)  /\  w  =  x ) )
86, 7mpbiran 884 . . . . . 6  |-  ( E. z ( z  =  (/)  /\  w  =  x )  <->  w  =  x
)
9 p0ex 4197 . . . . . . . 8  |-  { (/) }  e.  _V
109isseti 2794 . . . . . . 7  |-  E. z 
z  =  { (/) }
11 19.41v 1842 . . . . . . 7  |-  ( E. z ( z  =  { (/) }  /\  w  =  y )  <->  ( E. z  z  =  { (/)
}  /\  w  =  y ) )
1210, 11mpbiran 884 . . . . . 6  |-  ( E. z ( z  =  { (/) }  /\  w  =  y )  <->  w  =  y )
138, 12orbi12i 507 . . . . 5  |-  ( ( E. z ( z  =  (/)  /\  w  =  x )  \/  E. z ( z  =  { (/) }  /\  w  =  y ) )  <-> 
( w  =  x  \/  w  =  y ) )
142, 4, 133bitr3ri 267 . . . 4  |-  ( ( w  =  x  \/  w  =  y )  <->  E. z ( ( z  =  (/)  \/  z  =  { (/) } )  /\  ( ( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y )
) ) )
1514abbii 2395 . . 3  |-  { w  |  ( w  =  x  \/  w  =  y ) }  =  { w  |  E. z ( ( z  =  (/)  \/  z  =  { (/) } )  /\  ( ( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y )
) ) }
16 dfpr2 3656 . . . . 5  |-  { (/) ,  { (/) } }  =  { z  |  ( z  =  (/)  \/  z  =  { (/) } ) }
17 pp0ex 4199 . . . . 5  |-  { (/) ,  { (/) } }  e.  _V
1816, 17eqeltrri 2354 . . . 4  |-  { z  |  ( z  =  (/)  \/  z  =  { (/)
} ) }  e.  _V
19 equequ2 1649 . . . . . . . 8  |-  ( v  =  x  ->  (
w  =  v  <->  w  =  x ) )
20 0inp0 4182 . . . . . . . 8  |-  ( z  =  (/)  ->  -.  z  =  { (/) } )
2119, 20prlem1 928 . . . . . . 7  |-  ( v  =  x  ->  (
z  =  (/)  ->  (
( ( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y )
)  ->  w  =  v ) ) )
2221alrimdv 1619 . . . . . 6  |-  ( v  =  x  ->  (
z  =  (/)  ->  A. w
( ( ( z  =  (/)  /\  w  =  x )  \/  (
z  =  { (/) }  /\  w  =  y ) )  ->  w  =  v ) ) )
2322spimev 1939 . . . . 5  |-  ( z  =  (/)  ->  E. v A. w ( ( ( z  =  (/)  /\  w  =  x )  \/  (
z  =  { (/) }  /\  w  =  y ) )  ->  w  =  v ) )
24 orcom 376 . . . . . . . 8  |-  ( ( ( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y ) )  <-> 
( ( z  =  { (/) }  /\  w  =  y )  \/  ( z  =  (/)  /\  w  =  x ) ) )
25 equequ2 1649 . . . . . . . . 9  |-  ( v  =  y  ->  (
w  =  v  <->  w  =  y ) )
2620con2i 112 . . . . . . . . 9  |-  ( z  =  { (/) }  ->  -.  z  =  (/) )
2725, 26prlem1 928 . . . . . . . 8  |-  ( v  =  y  ->  (
z  =  { (/) }  ->  ( ( ( z  =  { (/) }  /\  w  =  y )  \/  ( z  =  (/)  /\  w  =  x ) )  ->  w  =  v )
) )
2824, 27syl7bi 221 . . . . . . 7  |-  ( v  =  y  ->  (
z  =  { (/) }  ->  ( ( ( z  =  (/)  /\  w  =  x )  \/  (
z  =  { (/) }  /\  w  =  y ) )  ->  w  =  v ) ) )
2928alrimdv 1619 . . . . . 6  |-  ( v  =  y  ->  (
z  =  { (/) }  ->  A. w ( ( ( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y ) )  ->  w  =  v ) ) )
3029spimev 1939 . . . . 5  |-  ( z  =  { (/) }  ->  E. v A. w ( ( ( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y )
)  ->  w  =  v ) )
3123, 30jaoi 368 . . . 4  |-  ( ( z  =  (/)  \/  z  =  { (/) } )  ->  E. v A. w ( ( ( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y )
)  ->  w  =  v ) )
3218, 31zfrep4 4139 . . 3  |-  { w  |  E. z ( ( z  =  (/)  \/  z  =  { (/) } )  /\  ( ( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y )
) ) }  e.  _V
3315, 32eqeltri 2353 . 2  |-  { w  |  ( w  =  x  \/  w  =  y ) }  e.  _V
341, 33eqeltri 2353 1  |-  { x ,  y }  e.  _V
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    /\ wa 358   A.wal 1527   E.wex 1528    = wceq 1623    e. wcel 1684   {cab 2269   _Vcvv 2788   (/)c0 3455   {csn 3640   {cpr 3641
This theorem is referenced by:  axpr  4213  isdrs2  14073  clatl  14220  dfdir2  25291  latdir  25295
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-pw 3627  df-sn 3646  df-pr 3647
  Copyright terms: Public domain W3C validator