Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfpair Unicode version

Theorem zfpair 4228
 Description: The Axiom of Pairing of Zermelo-Fraenkel set theory. Axiom 2 of [TakeutiZaring] p. 15. In some textbooks this is stated as a separate axiom; here we show it is redundant since it can be derived from the other axioms. This theorem should not be referenced by any proof other than axpr 4229. Instead, use zfpair2 4231 below so that the uses of the Axiom of Pairing can be more easily identified. (Contributed by NM, 18-Oct-1995.) (New usage is discouraged.)
Assertion
Ref Expression
zfpair

Proof of Theorem zfpair
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfpr2 3669 . 2
2 19.43 1595 . . . . 5
3 prlem2 929 . . . . . 6
43exbii 1572 . . . . 5
5 0ex 4166 . . . . . . . 8
65isseti 2807 . . . . . . 7
7 19.41v 1854 . . . . . . 7
86, 7mpbiran 884 . . . . . 6
9 p0ex 4213 . . . . . . . 8
109isseti 2807 . . . . . . 7
11 19.41v 1854 . . . . . . 7
1210, 11mpbiran 884 . . . . . 6
138, 12orbi12i 507 . . . . 5
142, 4, 133bitr3ri 267 . . . 4
1514abbii 2408 . . 3
16 dfpr2 3669 . . . . 5
17 pp0ex 4215 . . . . 5
1816, 17eqeltrri 2367 . . . 4
19 equequ2 1669 . . . . . . . 8
20 0inp0 4198 . . . . . . . 8
2119, 20prlem1 928 . . . . . . 7
2221alrimdv 1623 . . . . . 6
2322spimev 1952 . . . . 5
24 orcom 376 . . . . . . . 8
25 equequ2 1669 . . . . . . . . 9
2620con2i 112 . . . . . . . . 9
2725, 26prlem1 928 . . . . . . . 8
2824, 27syl7bi 221 . . . . . . 7
2928alrimdv 1623 . . . . . 6
3029spimev 1952 . . . . 5
3123, 30jaoi 368 . . . 4
3218, 31zfrep4 4155 . . 3
3315, 32eqeltri 2366 . 2
341, 33eqeltri 2366 1
 Colors of variables: wff set class Syntax hints:   wi 4   wo 357   wa 358  wal 1530  wex 1531   wceq 1632   wcel 1696  cab 2282  cvv 2801  c0 3468  csn 3653  cpr 3654 This theorem is referenced by:  axpr  4229  isdrs2  14089  clatl  14236  dfdir2  25394  latdir  25398 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-pw 3640  df-sn 3659  df-pr 3660
 Copyright terms: Public domain W3C validator