MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfpair Unicode version

Theorem zfpair 4211
Description: The Axiom of Pairing of Zermelo-Fraenkel set theory. Axiom 2 of [TakeutiZaring] p. 15. In some textbooks this is stated as a separate axiom; here we show it is redundant since it can be derived from the other axioms.

This theorem should not be referenced by any proof other than axpr 4212. Instead, use zfpair2 4214 below so that the uses of the Axiom of Pairing can be more easily identified. (Contributed by NM, 18-Oct-1995.) (New usage is discouraged.)

Assertion
Ref Expression
zfpair  |-  { x ,  y }  e.  _V
Dummy variables  z  w  v are mutually distinct and distinct from all other variables.

Proof of Theorem zfpair
StepHypRef Expression
1 dfpr2 3657 . 2  |-  { x ,  y }  =  { w  |  (
w  =  x  \/  w  =  y ) }
2 19.43 1593 . . . . 5  |-  ( E. z ( ( z  =  (/)  /\  w  =  x )  \/  (
z  =  { (/) }  /\  w  =  y ) )  <->  ( E. z ( z  =  (/)  /\  w  =  x )  \/  E. z
( z  =  { (/)
}  /\  w  =  y ) ) )
3 prlem2 931 . . . . . 6  |-  ( ( ( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y ) )  <-> 
( ( z  =  (/)  \/  z  =  { (/)
} )  /\  (
( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y ) ) ) )
43exbii 1570 . . . . 5  |-  ( E. z ( ( z  =  (/)  /\  w  =  x )  \/  (
z  =  { (/) }  /\  w  =  y ) )  <->  E. z
( ( z  =  (/)  \/  z  =  { (/)
} )  /\  (
( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y ) ) ) )
5 0ex 4151 . . . . . . . 8  |-  (/)  e.  _V
65isseti 2795 . . . . . . 7  |-  E. z 
z  =  (/)
7 19.41v 1843 . . . . . . 7  |-  ( E. z ( z  =  (/)  /\  w  =  x )  <->  ( E. z 
z  =  (/)  /\  w  =  x ) )
86, 7mpbiran 886 . . . . . 6  |-  ( E. z ( z  =  (/)  /\  w  =  x )  <->  w  =  x
)
9 p0ex 4196 . . . . . . . 8  |-  { (/) }  e.  _V
109isseti 2795 . . . . . . 7  |-  E. z 
z  =  { (/) }
11 19.41v 1843 . . . . . . 7  |-  ( E. z ( z  =  { (/) }  /\  w  =  y )  <->  ( E. z  z  =  { (/)
}  /\  w  =  y ) )
1210, 11mpbiran 886 . . . . . 6  |-  ( E. z ( z  =  { (/) }  /\  w  =  y )  <->  w  =  y )
138, 12orbi12i 509 . . . . 5  |-  ( ( E. z ( z  =  (/)  /\  w  =  x )  \/  E. z ( z  =  { (/) }  /\  w  =  y ) )  <-> 
( w  =  x  \/  w  =  y ) )
142, 4, 133bitr3ri 269 . . . 4  |-  ( ( w  =  x  \/  w  =  y )  <->  E. z ( ( z  =  (/)  \/  z  =  { (/) } )  /\  ( ( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y )
) ) )
1514abbii 2396 . . 3  |-  { w  |  ( w  =  x  \/  w  =  y ) }  =  { w  |  E. z ( ( z  =  (/)  \/  z  =  { (/) } )  /\  ( ( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y )
) ) }
16 dfpr2 3657 . . . . 5  |-  { (/) ,  { (/) } }  =  { z  |  ( z  =  (/)  \/  z  =  { (/) } ) }
17 pp0ex 4198 . . . . 5  |-  { (/) ,  { (/) } }  e.  _V
1816, 17eqeltrri 2355 . . . 4  |-  { z  |  ( z  =  (/)  \/  z  =  { (/)
} ) }  e.  _V
19 equequ2 1650 . . . . . . . 8  |-  ( v  =  x  ->  (
w  =  v  <->  w  =  x ) )
20 0inp0 4181 . . . . . . . 8  |-  ( z  =  (/)  ->  -.  z  =  { (/) } )
2119, 20prlem1 930 . . . . . . 7  |-  ( v  =  x  ->  (
z  =  (/)  ->  (
( ( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y )
)  ->  w  =  v ) ) )
2221alrimdv 1620 . . . . . 6  |-  ( v  =  x  ->  (
z  =  (/)  ->  A. w
( ( ( z  =  (/)  /\  w  =  x )  \/  (
z  =  { (/) }  /\  w  =  y ) )  ->  w  =  v ) ) )
2322spimev 1944 . . . . 5  |-  ( z  =  (/)  ->  E. v A. w ( ( ( z  =  (/)  /\  w  =  x )  \/  (
z  =  { (/) }  /\  w  =  y ) )  ->  w  =  v ) )
24 orcom 378 . . . . . . . 8  |-  ( ( ( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y ) )  <-> 
( ( z  =  { (/) }  /\  w  =  y )  \/  ( z  =  (/)  /\  w  =  x ) ) )
25 equequ2 1650 . . . . . . . . 9  |-  ( v  =  y  ->  (
w  =  v  <->  w  =  y ) )
2620con2i 114 . . . . . . . . 9  |-  ( z  =  { (/) }  ->  -.  z  =  (/) )
2725, 26prlem1 930 . . . . . . . 8  |-  ( v  =  y  ->  (
z  =  { (/) }  ->  ( ( ( z  =  { (/) }  /\  w  =  y )  \/  ( z  =  (/)  /\  w  =  x ) )  ->  w  =  v )
) )
2824, 27syl7bi 223 . . . . . . 7  |-  ( v  =  y  ->  (
z  =  { (/) }  ->  ( ( ( z  =  (/)  /\  w  =  x )  \/  (
z  =  { (/) }  /\  w  =  y ) )  ->  w  =  v ) ) )
2928alrimdv 1620 . . . . . 6  |-  ( v  =  y  ->  (
z  =  { (/) }  ->  A. w ( ( ( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y ) )  ->  w  =  v ) ) )
3029spimev 1944 . . . . 5  |-  ( z  =  { (/) }  ->  E. v A. w ( ( ( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y )
)  ->  w  =  v ) )
3123, 30jaoi 370 . . . 4  |-  ( ( z  =  (/)  \/  z  =  { (/) } )  ->  E. v A. w ( ( ( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y )
)  ->  w  =  v ) )
3218, 31zfrep4 4140 . . 3  |-  { w  |  E. z ( ( z  =  (/)  \/  z  =  { (/) } )  /\  ( ( z  =  (/)  /\  w  =  x )  \/  ( z  =  { (/) }  /\  w  =  y )
) ) }  e.  _V
3315, 32eqeltri 2354 . 2  |-  { w  |  ( w  =  x  \/  w  =  y ) }  e.  _V
341, 33eqeltri 2354 1  |-  { x ,  y }  e.  _V
Colors of variables: wff set class
Syntax hints:    -> wi 6    \/ wo 359    /\ wa 360   A.wal 1528   E.wex 1529    = wceq 1624    e. wcel 1685   {cab 2270   _Vcvv 2789   (/)c0 3456   {csn 3641   {cpr 3642
This theorem is referenced by:  axpr  4212  isdrs2  14067  clatl  14214  dfdir2  24690  latdir  24694
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-v 2791  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-pw 3628  df-sn 3647  df-pr 3648
  Copyright terms: Public domain W3C validator