MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfreg Unicode version

Theorem zfreg 7305
Description: The Axiom of Regularity using abbreviations. Axiom 6 of [TakeutiZaring] p. 21. This is called the "weak form." There is also a "strong form," not requiring that  A be a set, that can be proved with more difficulty (see zfregs 7410). (Contributed by NM, 26-Nov-1995.)
Hypothesis
Ref Expression
zfreg.1  |-  A  e. 
_V
Assertion
Ref Expression
zfreg  |-  ( A  =/=  (/)  ->  E. x  e.  A  ( x  i^i  A )  =  (/) )
Distinct variable group:    x, A

Proof of Theorem zfreg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 zfreg.1 . . 3  |-  A  e. 
_V
21zfregcl 7304 . 2  |-  ( E. x  x  e.  A  ->  E. x  e.  A  A. y  e.  x  -.  y  e.  A
)
3 n0 3465 . 2  |-  ( A  =/=  (/)  <->  E. x  x  e.  A )
4 disj 3496 . . 3  |-  ( ( x  i^i  A )  =  (/)  <->  A. y  e.  x  -.  y  e.  A
)
54rexbii 2569 . 2  |-  ( E. x  e.  A  ( x  i^i  A )  =  (/)  <->  E. x  e.  A  A. y  e.  x  -.  y  e.  A
)
62, 3, 53imtr4i 257 1  |-  ( A  =/=  (/)  ->  E. x  e.  A  ( x  i^i  A )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   E.wex 1528    = wceq 1623    e. wcel 1685    =/= wne 2447   A.wral 2544   E.wrex 2545   _Vcvv 2789    i^i cin 3152   (/)c0 3456
This theorem is referenced by:  inf3lem3  7327  en3lp  7414  setindtr  26528
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-reg 7302
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-v 2791  df-dif 3156  df-in 3160  df-nul 3457
  Copyright terms: Public domain W3C validator