MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfregcl Structured version   Unicode version

Theorem zfregcl 7554
Description: The Axiom of Regularity with class variables. (Contributed by NM, 5-Aug-1994.)
Hypothesis
Ref Expression
zfregcl.1  |-  A  e. 
_V
Assertion
Ref Expression
zfregcl  |-  ( E. x  x  e.  A  ->  E. x  e.  A  A. y  e.  x  -.  y  e.  A
)
Distinct variable group:    x, y, A

Proof of Theorem zfregcl
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 zfregcl.1 . 2  |-  A  e. 
_V
2 eleq2 2496 . . . 4  |-  ( z  =  A  ->  (
x  e.  z  <->  x  e.  A ) )
32exbidv 1636 . . 3  |-  ( z  =  A  ->  ( E. x  x  e.  z 
<->  E. x  x  e.  A ) )
4 eleq2 2496 . . . . . 6  |-  ( z  =  A  ->  (
y  e.  z  <->  y  e.  A ) )
54notbid 286 . . . . 5  |-  ( z  =  A  ->  ( -.  y  e.  z  <->  -.  y  e.  A ) )
65ralbidv 2717 . . . 4  |-  ( z  =  A  ->  ( A. y  e.  x  -.  y  e.  z  <->  A. y  e.  x  -.  y  e.  A )
)
76rexeqbi1dv 2905 . . 3  |-  ( z  =  A  ->  ( E. x  e.  z  A. y  e.  x  -.  y  e.  z  <->  E. x  e.  A  A. y  e.  x  -.  y  e.  A )
)
83, 7imbi12d 312 . 2  |-  ( z  =  A  ->  (
( E. x  x  e.  z  ->  E. x  e.  z  A. y  e.  x  -.  y  e.  z )  <->  ( E. x  x  e.  A  ->  E. x  e.  A  A. y  e.  x  -.  y  e.  A
) ) )
9 nfre1 2754 . . 3  |-  F/ x E. x  e.  z  A. y  e.  x  -.  y  e.  z
10 axreg2 7553 . . . 4  |-  ( x  e.  z  ->  E. x
( x  e.  z  /\  A. y ( y  e.  x  ->  -.  y  e.  z
) ) )
11 df-ral 2702 . . . . . 6  |-  ( A. y  e.  x  -.  y  e.  z  <->  A. y
( y  e.  x  ->  -.  y  e.  z ) )
1211rexbii 2722 . . . . 5  |-  ( E. x  e.  z  A. y  e.  x  -.  y  e.  z  <->  E. x  e.  z  A. y
( y  e.  x  ->  -.  y  e.  z ) )
13 df-rex 2703 . . . . 5  |-  ( E. x  e.  z  A. y ( y  e.  x  ->  -.  y  e.  z )  <->  E. x
( x  e.  z  /\  A. y ( y  e.  x  ->  -.  y  e.  z
) ) )
1412, 13bitr2i 242 . . . 4  |-  ( E. x ( x  e.  z  /\  A. y
( y  e.  x  ->  -.  y  e.  z ) )  <->  E. x  e.  z  A. y  e.  x  -.  y  e.  z )
1510, 14sylib 189 . . 3  |-  ( x  e.  z  ->  E. x  e.  z  A. y  e.  x  -.  y  e.  z )
169, 15exlimi 1821 . 2  |-  ( E. x  x  e.  z  ->  E. x  e.  z 
A. y  e.  x  -.  y  e.  z
)
171, 8, 16vtocl 2998 1  |-  ( E. x  x  e.  A  ->  E. x  e.  A  A. y  e.  x  -.  y  e.  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359   A.wal 1549   E.wex 1550    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698   _Vcvv 2948
This theorem is referenced by:  zfreg  7555  zfreg2  7556  elirrv  7557
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-reg 7552
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-v 2950
  Copyright terms: Public domain W3C validator