MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfrep6 Unicode version

Theorem zfrep6 5709
Description: A version of the Axiom of Replacement. Normally  ph would have free variables  x and  y. Axiom 6 of [Kunen] p. 12. The Separation Scheme ax-sep 4142 cannot be derived from this version and must be stated as a separate axiom in an axiom system (such as Kunen's) that uses this version in place of our ax-rep 4132. (Contributed by NM, 10-Oct-2003.)
Assertion
Ref Expression
zfrep6  |-  ( A. x  e.  z  E! y ph  ->  E. w A. x  e.  z  E. y  e.  w  ph )
Distinct variable groups:    ph, w    x, y, z, w
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem zfrep6
StepHypRef Expression
1 euex 2167 . . . . . . 7  |-  ( E! y ph  ->  E. y ph )
21ralimi 2619 . . . . . 6  |-  ( A. x  e.  z  E! y ph  ->  A. x  e.  z  E. y ph )
3 rabid2 2718 . . . . . 6  |-  ( z  =  { x  e.  z  |  E. y ph }  <->  A. x  e.  z  E. y ph )
42, 3sylibr 205 . . . . 5  |-  ( A. x  e.  z  E! y ph  ->  z  =  { x  e.  z  |  E. y ph }
)
5 19.42v 1857 . . . . . . 7  |-  ( E. y ( x  e.  z  /\  ph )  <->  ( x  e.  z  /\  E. y ph ) )
65abbii 2396 . . . . . 6  |-  { x  |  E. y ( x  e.  z  /\  ph ) }  =  {
x  |  ( x  e.  z  /\  E. y ph ) }
7 dmopab 4888 . . . . . 6  |-  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  =  { x  |  E. y ( x  e.  z  /\  ph ) }
8 df-rab 2553 . . . . . 6  |-  { x  e.  z  |  E. y ph }  =  {
x  |  ( x  e.  z  /\  E. y ph ) }
96, 7, 83eqtr4i 2314 . . . . 5  |-  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  =  { x  e.  z  |  E. y ph }
104, 9syl6reqr 2335 . . . 4  |-  ( A. x  e.  z  E! y ph  ->  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  =  z )
11 vex 2792 . . . 4  |-  z  e. 
_V
1210, 11syl6eqel 2372 . . 3  |-  ( A. x  e.  z  E! y ph  ->  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  e.  _V )
13 eumo 2184 . . . . . . 7  |-  ( E! y ph  ->  E* y ph )
1413imim2i 15 . . . . . 6  |-  ( ( x  e.  z  ->  E! y ph )  -> 
( x  e.  z  ->  E* y ph ) )
15 moanimv 2202 . . . . . 6  |-  ( E* y ( x  e.  z  /\  ph )  <->  ( x  e.  z  ->  E* y ph ) )
1614, 15sylibr 205 . . . . 5  |-  ( ( x  e.  z  ->  E! y ph )  ->  E* y ( x  e.  z  /\  ph )
)
1716alimi 1551 . . . 4  |-  ( A. x ( x  e.  z  ->  E! y ph )  ->  A. x E* y ( x  e.  z  /\  ph )
)
18 df-ral 2549 . . . 4  |-  ( A. x  e.  z  E! y ph  <->  A. x ( x  e.  z  ->  E! y ph ) )
19 funopab 5253 . . . 4  |-  ( Fun 
{ <. x ,  y
>.  |  ( x  e.  z  /\  ph ) } 
<-> 
A. x E* y
( x  e.  z  /\  ph ) )
2017, 18, 193imtr4i 259 . . 3  |-  ( A. x  e.  z  E! y ph  ->  Fun  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } )
21 funrnex 5708 . . 3  |-  ( dom 
{ <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }  e.  _V  ->  ( Fun  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  ->  ran  {
<. x ,  y >.  |  ( x  e.  z  /\  ph ) }  e.  _V )
)
2212, 20, 21sylc 58 . 2  |-  ( A. x  e.  z  E! y ph  ->  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  e.  _V )
23 nfra1 2594 . . 3  |-  F/ x A. x  e.  z  E! y ph
2410eleq2d 2351 . . . 4  |-  ( A. x  e.  z  E! y ph  ->  ( x  e.  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  <->  x  e.  z ) )
25 opabid 4270 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) } 
<->  ( x  e.  z  /\  ph ) )
26 vex 2792 . . . . . . . . . 10  |-  x  e. 
_V
27 vex 2792 . . . . . . . . . 10  |-  y  e. 
_V
2826, 27opelrn 4909 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }  ->  y  e.  ran  {
<. x ,  y >.  |  ( x  e.  z  /\  ph ) } )
2925, 28sylbir 206 . . . . . . . 8  |-  ( ( x  e.  z  /\  ph )  ->  y  e.  ran  { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) } )
3029ex 425 . . . . . . 7  |-  ( x  e.  z  ->  ( ph  ->  y  e.  ran  {
<. x ,  y >.  |  ( x  e.  z  /\  ph ) } ) )
3130impac 607 . . . . . 6  |-  ( ( x  e.  z  /\  ph )  ->  ( y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  /\  ph ) )
3231eximi 1568 . . . . 5  |-  ( E. y ( x  e.  z  /\  ph )  ->  E. y ( y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  /\  ph ) )
337abeq2i 2391 . . . . 5  |-  ( x  e.  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  <->  E. y
( x  e.  z  /\  ph ) )
34 df-rex 2550 . . . . 5  |-  ( E. y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph  <->  E. y ( y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  /\  ph ) )
3532, 33, 343imtr4i 259 . . . 4  |-  ( x  e.  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  ->  E. y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph )
3624, 35syl6bir 222 . . 3  |-  ( A. x  e.  z  E! y ph  ->  ( x  e.  z  ->  E. y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph )
)
3723, 36ralrimi 2625 . 2  |-  ( A. x  e.  z  E! y ph  ->  A. x  e.  z  E. y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph )
38 nfopab1 4086 . . . . . 6  |-  F/_ x { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }
3938nfrn 4920 . . . . 5  |-  F/_ x ran  { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }
4039nfeq2 2431 . . . 4  |-  F/ x  w  =  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }
41 nfcv 2420 . . . . 5  |-  F/_ y
w
42 nfopab2 4087 . . . . . 6  |-  F/_ y { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }
4342nfrn 4920 . . . . 5  |-  F/_ y ran  { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }
4441, 43rexeqf 2734 . . . 4  |-  ( w  =  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  ->  ( E. y  e.  w  ph  <->  E. y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph ) )
4540, 44ralbid 2562 . . 3  |-  ( w  =  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  ->  ( A. x  e.  z  E. y  e.  w  ph  <->  A. x  e.  z  E. y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph )
)
4645spcegv 2870 . 2  |-  ( ran 
{ <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }  e.  _V  ->  ( A. x  e.  z  E. y  e.  ran  {
<. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph  ->  E. w A. x  e.  z  E. y  e.  w  ph ) )
4722, 37, 46sylc 58 1  |-  ( A. x  e.  z  E! y ph  ->  E. w A. x  e.  z  E. y  e.  w  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360   A.wal 1532   E.wex 1533    = wceq 1628    e. wcel 1688   E!weu 2144   E*wmo 2145   {cab 2270   A.wral 2544   E.wrex 2545   {crab 2548   _Vcvv 2789   <.cop 3644   {copab 4077   dom cdm 4688   ran crn 4689   Fun wfun 5215
This theorem is referenced by:  bnj865  28222
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-13 1690  ax-14 1692  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1534  df-nf 1537  df-sb 1636  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229
  Copyright terms: Public domain W3C validator