MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfrep6 Unicode version

Theorem zfrep6 5935
Description: A version of the Axiom of Replacement. Normally  ph would have free variables  x and  y. Axiom 6 of [Kunen] p. 12. The Separation Scheme ax-sep 4298 cannot be derived from this version and must be stated as a separate axiom in an axiom system (such as Kunen's) that uses this version in place of our ax-rep 4288. (Contributed by NM, 10-Oct-2003.)
Assertion
Ref Expression
zfrep6  |-  ( A. x  e.  z  E! y ph  ->  E. w A. x  e.  z  E. y  e.  w  ph )
Distinct variable groups:    ph, w    x, y, z, w
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem zfrep6
StepHypRef Expression
1 euex 2285 . . . . . . 7  |-  ( E! y ph  ->  E. y ph )
21ralimi 2749 . . . . . 6  |-  ( A. x  e.  z  E! y ph  ->  A. x  e.  z  E. y ph )
3 rabid2 2853 . . . . . 6  |-  ( z  =  { x  e.  z  |  E. y ph }  <->  A. x  e.  z  E. y ph )
42, 3sylibr 204 . . . . 5  |-  ( A. x  e.  z  E! y ph  ->  z  =  { x  e.  z  |  E. y ph }
)
5 19.42v 1924 . . . . . . 7  |-  ( E. y ( x  e.  z  /\  ph )  <->  ( x  e.  z  /\  E. y ph ) )
65abbii 2524 . . . . . 6  |-  { x  |  E. y ( x  e.  z  /\  ph ) }  =  {
x  |  ( x  e.  z  /\  E. y ph ) }
7 dmopab 5047 . . . . . 6  |-  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  =  { x  |  E. y ( x  e.  z  /\  ph ) }
8 df-rab 2683 . . . . . 6  |-  { x  e.  z  |  E. y ph }  =  {
x  |  ( x  e.  z  /\  E. y ph ) }
96, 7, 83eqtr4i 2442 . . . . 5  |-  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  =  { x  e.  z  |  E. y ph }
104, 9syl6reqr 2463 . . . 4  |-  ( A. x  e.  z  E! y ph  ->  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  =  z )
11 vex 2927 . . . 4  |-  z  e. 
_V
1210, 11syl6eqel 2500 . . 3  |-  ( A. x  e.  z  E! y ph  ->  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  e.  _V )
13 eumo 2302 . . . . . . 7  |-  ( E! y ph  ->  E* y ph )
1413imim2i 14 . . . . . 6  |-  ( ( x  e.  z  ->  E! y ph )  -> 
( x  e.  z  ->  E* y ph ) )
15 moanimv 2320 . . . . . 6  |-  ( E* y ( x  e.  z  /\  ph )  <->  ( x  e.  z  ->  E* y ph ) )
1614, 15sylibr 204 . . . . 5  |-  ( ( x  e.  z  ->  E! y ph )  ->  E* y ( x  e.  z  /\  ph )
)
1716alimi 1565 . . . 4  |-  ( A. x ( x  e.  z  ->  E! y ph )  ->  A. x E* y ( x  e.  z  /\  ph )
)
18 df-ral 2679 . . . 4  |-  ( A. x  e.  z  E! y ph  <->  A. x ( x  e.  z  ->  E! y ph ) )
19 funopab 5453 . . . 4  |-  ( Fun 
{ <. x ,  y
>.  |  ( x  e.  z  /\  ph ) } 
<-> 
A. x E* y
( x  e.  z  /\  ph ) )
2017, 18, 193imtr4i 258 . . 3  |-  ( A. x  e.  z  E! y ph  ->  Fun  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } )
21 funrnex 5934 . . 3  |-  ( dom 
{ <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }  e.  _V  ->  ( Fun  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  ->  ran  {
<. x ,  y >.  |  ( x  e.  z  /\  ph ) }  e.  _V )
)
2212, 20, 21sylc 58 . 2  |-  ( A. x  e.  z  E! y ph  ->  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  e.  _V )
23 nfra1 2724 . . 3  |-  F/ x A. x  e.  z  E! y ph
2410eleq2d 2479 . . . 4  |-  ( A. x  e.  z  E! y ph  ->  ( x  e.  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  <->  x  e.  z ) )
25 opabid 4429 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) } 
<->  ( x  e.  z  /\  ph ) )
26 vex 2927 . . . . . . . . . 10  |-  x  e. 
_V
27 vex 2927 . . . . . . . . . 10  |-  y  e. 
_V
2826, 27opelrn 5068 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }  ->  y  e.  ran  {
<. x ,  y >.  |  ( x  e.  z  /\  ph ) } )
2925, 28sylbir 205 . . . . . . . 8  |-  ( ( x  e.  z  /\  ph )  ->  y  e.  ran  { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) } )
3029ex 424 . . . . . . 7  |-  ( x  e.  z  ->  ( ph  ->  y  e.  ran  {
<. x ,  y >.  |  ( x  e.  z  /\  ph ) } ) )
3130impac 605 . . . . . 6  |-  ( ( x  e.  z  /\  ph )  ->  ( y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  /\  ph ) )
3231eximi 1582 . . . . 5  |-  ( E. y ( x  e.  z  /\  ph )  ->  E. y ( y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  /\  ph ) )
337abeq2i 2519 . . . . 5  |-  ( x  e.  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  <->  E. y
( x  e.  z  /\  ph ) )
34 df-rex 2680 . . . . 5  |-  ( E. y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph  <->  E. y ( y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  /\  ph ) )
3532, 33, 343imtr4i 258 . . . 4  |-  ( x  e.  dom  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  ->  E. y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph )
3624, 35syl6bir 221 . . 3  |-  ( A. x  e.  z  E! y ph  ->  ( x  e.  z  ->  E. y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph )
)
3723, 36ralrimi 2755 . 2  |-  ( A. x  e.  z  E! y ph  ->  A. x  e.  z  E. y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph )
38 nfopab1 4242 . . . . . 6  |-  F/_ x { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }
3938nfrn 5079 . . . . 5  |-  F/_ x ran  { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }
4039nfeq2 2559 . . . 4  |-  F/ x  w  =  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }
41 nfcv 2548 . . . . 5  |-  F/_ y
w
42 nfopab2 4243 . . . . . 6  |-  F/_ y { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }
4342nfrn 5079 . . . . 5  |-  F/_ y ran  { <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }
4441, 43rexeqf 2869 . . . 4  |-  ( w  =  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  ->  ( E. y  e.  w  ph  <->  E. y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph ) )
4540, 44ralbid 2692 . . 3  |-  ( w  =  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) }  ->  ( A. x  e.  z  E. y  e.  w  ph  <->  A. x  e.  z  E. y  e.  ran  { <. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph )
)
4645spcegv 3005 . 2  |-  ( ran 
{ <. x ,  y
>.  |  ( x  e.  z  /\  ph ) }  e.  _V  ->  ( A. x  e.  z  E. y  e.  ran  {
<. x ,  y >.  |  ( x  e.  z  /\  ph ) } ph  ->  E. w A. x  e.  z  E. y  e.  w  ph ) )
4722, 37, 46sylc 58 1  |-  ( A. x  e.  z  E! y ph  ->  E. w A. x  e.  z  E. y  e.  w  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   A.wal 1546   E.wex 1547    = wceq 1649    e. wcel 1721   E!weu 2262   E*wmo 2263   {cab 2398   A.wral 2674   E.wrex 2675   {crab 2678   _Vcvv 2924   <.cop 3785   {copab 4233   dom cdm 4845   ran crn 4846   Fun wfun 5415
This theorem is referenced by:  bnj865  29012
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429
  Copyright terms: Public domain W3C validator