Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zindbi Unicode version

Theorem zindbi 26354
Description: Inductively transfer a property to the integers if it holds for zero and passes between adjacent integers in either direction. (Contributed by Stefan O'Rear, 1-Oct-2014.)
Hypotheses
Ref Expression
zindbi.1  |-  ( y  e.  ZZ  ->  ( ps 
<->  ch ) )
zindbi.2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
zindbi.3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  ch ) )
zindbi.4  |-  ( x  =  0  ->  ( ph 
<->  th ) )
zindbi.5  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
Assertion
Ref Expression
zindbi  |-  ( A  e.  ZZ  ->  ( th 
<->  ta ) )
Distinct variable groups:    ph, y    x, A, y    ps, x    ch, x    th, x    ta, x
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)

Proof of Theorem zindbi
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 c0ex 8922 . . . 4  |-  0  e.  _V
2 zindbi.4 . . . 4  |-  ( x  =  0  ->  ( ph 
<->  th ) )
31, 2sbcie 3101 . . 3  |-  ( [.
0  /  x ]. ph  <->  th )
4 0z 10127 . . . . 5  |-  0  e.  ZZ
5 eleq1 2418 . . . . . . . . . 10  |-  ( y  =  0  ->  (
y  e.  ZZ  <->  0  e.  ZZ ) )
6 breq1 4107 . . . . . . . . . 10  |-  ( y  =  0  ->  (
y  <_  b  <->  0  <_  b ) )
75, 63anbi13d 1254 . . . . . . . . 9  |-  ( y  =  0  ->  (
( y  e.  ZZ  /\  b  e.  ZZ  /\  y  <_  b )  <->  ( 0  e.  ZZ  /\  b  e.  ZZ  /\  0  <_ 
b ) ) )
8 dfsbcq 3069 . . . . . . . . . 10  |-  ( y  =  0  ->  ( [. y  /  x ]. ph  <->  [. 0  /  x ]. ph ) )
98bibi1d 310 . . . . . . . . 9  |-  ( y  =  0  ->  (
( [. y  /  x ]. ph  <->  [. b  /  x ]. ph )  <->  ( [.
0  /  x ]. ph  <->  [. b  /  x ]. ph ) ) )
107, 9imbi12d 311 . . . . . . . 8  |-  ( y  =  0  ->  (
( ( y  e.  ZZ  /\  b  e.  ZZ  /\  y  <_ 
b )  ->  ( [. y  /  x ]. ph  <->  [. b  /  x ]. ph ) )  <->  ( (
0  e.  ZZ  /\  b  e.  ZZ  /\  0  <_  b )  ->  ( [. 0  /  x ]. ph  <->  [. b  /  x ]. ph ) ) ) )
11 eleq1 2418 . . . . . . . . . 10  |-  ( b  =  A  ->  (
b  e.  ZZ  <->  A  e.  ZZ ) )
12 breq2 4108 . . . . . . . . . 10  |-  ( b  =  A  ->  (
0  <_  b  <->  0  <_  A ) )
1311, 123anbi23d 1255 . . . . . . . . 9  |-  ( b  =  A  ->  (
( 0  e.  ZZ  /\  b  e.  ZZ  /\  0  <_  b )  <->  ( 0  e.  ZZ  /\  A  e.  ZZ  /\  0  <_  A ) ) )
14 dfsbcq 3069 . . . . . . . . . 10  |-  ( b  =  A  ->  ( [. b  /  x ]. ph  <->  [. A  /  x ]. ph ) )
1514bibi2d 309 . . . . . . . . 9  |-  ( b  =  A  ->  (
( [. 0  /  x ]. ph  <->  [. b  /  x ]. ph )  <->  ( [.
0  /  x ]. ph  <->  [. A  /  x ]. ph ) ) )
1613, 15imbi12d 311 . . . . . . . 8  |-  ( b  =  A  ->  (
( ( 0  e.  ZZ  /\  b  e.  ZZ  /\  0  <_ 
b )  ->  ( [. 0  /  x ]. ph  <->  [. b  /  x ]. ph ) )  <->  ( (
0  e.  ZZ  /\  A  e.  ZZ  /\  0  <_  A )  ->  ( [. 0  /  x ]. ph  <->  [. A  /  x ]. ph ) ) ) )
17 dfsbcq 3069 . . . . . . . . . 10  |-  ( a  =  y  ->  ( [. a  /  x ]. ph  <->  [. y  /  x ]. ph ) )
1817bibi2d 309 . . . . . . . . 9  |-  ( a  =  y  ->  (
( [. y  /  x ]. ph  <->  [. a  /  x ]. ph )  <->  ( [. y  /  x ]. ph  <->  [. y  /  x ]. ph ) ) )
19 dfsbcq 3069 . . . . . . . . . 10  |-  ( a  =  b  ->  ( [. a  /  x ]. ph  <->  [. b  /  x ]. ph ) )
2019bibi2d 309 . . . . . . . . 9  |-  ( a  =  b  ->  (
( [. y  /  x ]. ph  <->  [. a  /  x ]. ph )  <->  ( [. y  /  x ]. ph  <->  [. b  /  x ]. ph ) ) )
21 dfsbcq 3069 . . . . . . . . . 10  |-  ( a  =  ( b  +  1 )  ->  ( [. a  /  x ]. ph  <->  [. ( b  +  1 )  /  x ]. ph ) )
2221bibi2d 309 . . . . . . . . 9  |-  ( a  =  ( b  +  1 )  ->  (
( [. y  /  x ]. ph  <->  [. a  /  x ]. ph )  <->  ( [. y  /  x ]. ph  <->  [. ( b  +  1 )  /  x ]. ph ) ) )
23 biidd 228 . . . . . . . . 9  |-  ( y  e.  ZZ  ->  ( [. y  /  x ]. ph  <->  [. y  /  x ]. ph ) )
24 vex 2867 . . . . . . . . . . . . . . . 16  |-  y  e. 
_V
25 zindbi.2 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
2624, 25sbcie 3101 . . . . . . . . . . . . . . 15  |-  ( [. y  /  x ]. ph  <->  ps )
27 dfsbcq 3069 . . . . . . . . . . . . . . 15  |-  ( y  =  b  ->  ( [. y  /  x ]. ph  <->  [. b  /  x ]. ph ) )
2826, 27syl5bbr 250 . . . . . . . . . . . . . 14  |-  ( y  =  b  ->  ( ps 
<-> 
[. b  /  x ]. ph ) )
29 ovex 5970 . . . . . . . . . . . . . . . 16  |-  ( y  +  1 )  e. 
_V
30 zindbi.3 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  ch ) )
3129, 30sbcie 3101 . . . . . . . . . . . . . . 15  |-  ( [. ( y  +  1 )  /  x ]. ph  <->  ch )
32 oveq1 5952 . . . . . . . . . . . . . . . 16  |-  ( y  =  b  ->  (
y  +  1 )  =  ( b  +  1 ) )
33 dfsbcq 3069 . . . . . . . . . . . . . . . 16  |-  ( ( y  +  1 )  =  ( b  +  1 )  ->  ( [. ( y  +  1 )  /  x ]. ph  <->  [. ( b  +  1 )  /  x ]. ph ) )
3432, 33syl 15 . . . . . . . . . . . . . . 15  |-  ( y  =  b  ->  ( [. ( y  +  1 )  /  x ]. ph  <->  [. ( b  +  1 )  /  x ]. ph ) )
3531, 34syl5bbr 250 . . . . . . . . . . . . . 14  |-  ( y  =  b  ->  ( ch 
<-> 
[. ( b  +  1 )  /  x ]. ph ) )
3628, 35bibi12d 312 . . . . . . . . . . . . 13  |-  ( y  =  b  ->  (
( ps  <->  ch )  <->  (
[. b  /  x ]. ph  <->  [. ( b  +  1 )  /  x ]. ph ) ) )
37 zindbi.1 . . . . . . . . . . . . 13  |-  ( y  e.  ZZ  ->  ( ps 
<->  ch ) )
3836, 37vtoclga 2925 . . . . . . . . . . . 12  |-  ( b  e.  ZZ  ->  ( [. b  /  x ]. ph  <->  [. ( b  +  1 )  /  x ]. ph ) )
39383ad2ant2 977 . . . . . . . . . . 11  |-  ( ( y  e.  ZZ  /\  b  e.  ZZ  /\  y  <_  b )  ->  ( [. b  /  x ]. ph  <->  [. ( b  +  1 )  /  x ]. ph ) )
4039bibi2d 309 . . . . . . . . . 10  |-  ( ( y  e.  ZZ  /\  b  e.  ZZ  /\  y  <_  b )  ->  (
( [. y  /  x ]. ph  <->  [. b  /  x ]. ph )  <->  ( [. y  /  x ]. ph  <->  [. ( b  +  1 )  /  x ]. ph ) ) )
4140biimpd 198 . . . . . . . . 9  |-  ( ( y  e.  ZZ  /\  b  e.  ZZ  /\  y  <_  b )  ->  (
( [. y  /  x ]. ph  <->  [. b  /  x ]. ph )  ->  ( [. y  /  x ]. ph  <->  [. ( b  +  1 )  /  x ]. ph ) ) )
4218, 20, 22, 20, 23, 41uzind 10195 . . . . . . . 8  |-  ( ( y  e.  ZZ  /\  b  e.  ZZ  /\  y  <_  b )  ->  ( [. y  /  x ]. ph  <->  [. b  /  x ]. ph ) )
4310, 16, 42vtocl2g 2923 . . . . . . 7  |-  ( ( 0  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( 0  e.  ZZ  /\  A  e.  ZZ  /\  0  <_  A )  ->  ( [. 0  /  x ]. ph  <->  [. A  /  x ]. ph ) ) )
44433adant3 975 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  A  e.  ZZ  /\  0  <_  A )  ->  (
( 0  e.  ZZ  /\  A  e.  ZZ  /\  0  <_  A )  -> 
( [. 0  /  x ]. ph  <->  [. A  /  x ]. ph ) ) )
4544pm2.43i 43 . . . . 5  |-  ( ( 0  e.  ZZ  /\  A  e.  ZZ  /\  0  <_  A )  ->  ( [. 0  /  x ]. ph  <->  [. A  /  x ]. ph ) )
464, 45mp3an1 1264 . . . 4  |-  ( ( A  e.  ZZ  /\  0  <_  A )  -> 
( [. 0  /  x ]. ph  <->  [. A  /  x ]. ph ) )
47 eleq1 2418 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
y  e.  ZZ  <->  A  e.  ZZ ) )
48 breq1 4107 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
y  <_  b  <->  A  <_  b ) )
4947, 483anbi13d 1254 . . . . . . . . . 10  |-  ( y  =  A  ->  (
( y  e.  ZZ  /\  b  e.  ZZ  /\  y  <_  b )  <->  ( A  e.  ZZ  /\  b  e.  ZZ  /\  A  <_ 
b ) ) )
50 dfsbcq 3069 . . . . . . . . . . 11  |-  ( y  =  A  ->  ( [. y  /  x ]. ph  <->  [. A  /  x ]. ph ) )
5150bibi1d 310 . . . . . . . . . 10  |-  ( y  =  A  ->  (
( [. y  /  x ]. ph  <->  [. b  /  x ]. ph )  <->  ( [. A  /  x ]. ph  <->  [. b  /  x ]. ph ) ) )
5249, 51imbi12d 311 . . . . . . . . 9  |-  ( y  =  A  ->  (
( ( y  e.  ZZ  /\  b  e.  ZZ  /\  y  <_ 
b )  ->  ( [. y  /  x ]. ph  <->  [. b  /  x ]. ph ) )  <->  ( ( A  e.  ZZ  /\  b  e.  ZZ  /\  A  <_ 
b )  ->  ( [. A  /  x ]. ph  <->  [. b  /  x ]. ph ) ) ) )
53 eleq1 2418 . . . . . . . . . . 11  |-  ( b  =  0  ->  (
b  e.  ZZ  <->  0  e.  ZZ ) )
54 breq2 4108 . . . . . . . . . . 11  |-  ( b  =  0  ->  ( A  <_  b  <->  A  <_  0 ) )
5553, 543anbi23d 1255 . . . . . . . . . 10  |-  ( b  =  0  ->  (
( A  e.  ZZ  /\  b  e.  ZZ  /\  A  <_  b )  <->  ( A  e.  ZZ  /\  0  e.  ZZ  /\  A  <_ 
0 ) ) )
56 dfsbcq 3069 . . . . . . . . . . 11  |-  ( b  =  0  ->  ( [. b  /  x ]. ph  <->  [. 0  /  x ]. ph ) )
5756bibi2d 309 . . . . . . . . . 10  |-  ( b  =  0  ->  (
( [. A  /  x ]. ph  <->  [. b  /  x ]. ph )  <->  ( [. A  /  x ]. ph  <->  [. 0  /  x ]. ph )
) )
5855, 57imbi12d 311 . . . . . . . . 9  |-  ( b  =  0  ->  (
( ( A  e.  ZZ  /\  b  e.  ZZ  /\  A  <_ 
b )  ->  ( [. A  /  x ]. ph  <->  [. b  /  x ]. ph ) )  <->  ( ( A  e.  ZZ  /\  0  e.  ZZ  /\  A  <_ 
0 )  ->  ( [. A  /  x ]. ph  <->  [. 0  /  x ]. ph ) ) ) )
5952, 58, 42vtocl2g 2923 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( A  e.  ZZ  /\  0  e.  ZZ  /\  A  <_ 
0 )  ->  ( [. A  /  x ]. ph  <->  [. 0  /  x ]. ph ) ) )
60593adant3 975 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ  /\  A  <_  0 )  ->  (
( A  e.  ZZ  /\  0  e.  ZZ  /\  A  <_  0 )  -> 
( [. A  /  x ]. ph  <->  [. 0  /  x ]. ph ) ) )
6160pm2.43i 43 . . . . . 6  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ  /\  A  <_  0 )  ->  ( [. A  /  x ]. ph  <->  [. 0  /  x ]. ph ) )
624, 61mp3an2 1265 . . . . 5  |-  ( ( A  e.  ZZ  /\  A  <_  0 )  -> 
( [. A  /  x ]. ph  <->  [. 0  /  x ]. ph ) )
6362bicomd 192 . . . 4  |-  ( ( A  e.  ZZ  /\  A  <_  0 )  -> 
( [. 0  /  x ]. ph  <->  [. A  /  x ]. ph ) )
64 0re 8928 . . . . 5  |-  0  e.  RR
65 zre 10120 . . . . 5  |-  ( A  e.  ZZ  ->  A  e.  RR )
66 letric 9011 . . . . 5  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <_  A  \/  A  <_  0 ) )
6764, 65, 66sylancr 644 . . . 4  |-  ( A  e.  ZZ  ->  (
0  <_  A  \/  A  <_  0 ) )
6846, 63, 67mpjaodan 761 . . 3  |-  ( A  e.  ZZ  ->  ( [. 0  /  x ]. ph  <->  [. A  /  x ]. ph ) )
693, 68syl5bbr 250 . 2  |-  ( A  e.  ZZ  ->  ( th 
<-> 
[. A  /  x ]. ph ) )
70 zindbi.5 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
7170sbcieg 3099 . 2  |-  ( A  e.  ZZ  ->  ( [. A  /  x ]. ph  <->  ta ) )
7269, 71bitrd 244 1  |-  ( A  e.  ZZ  ->  ( th 
<->  ta ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710   [.wsbc 3067   class class class wbr 4104  (class class class)co 5945   RRcr 8826   0cc0 8827   1c1 8828    + caddc 8830    <_ cle 8958   ZZcz 10116
This theorem is referenced by:  jm2.25  26415
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-riota 6391  df-recs 6475  df-rdg 6510  df-er 6747  df-en 6952  df-dom 6953  df-sdom 6954  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-nn 9837  df-n0 10058  df-z 10117
  Copyright terms: Public domain W3C validator