MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znnen Unicode version

Theorem znnen 12767
Description: The set of integers and the set of natural numbers are equinumerous. Exercise 1 of [Gleason] p. 140. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 13-Jun-2014.)
Assertion
Ref Expression
znnen  |-  ZZ  ~~  NN

Proof of Theorem znnen
StepHypRef Expression
1 omelon 7557 . . . . . 6  |-  om  e.  On
2 nnenom 11274 . . . . . . 7  |-  NN  ~~  om
32ensymi 7116 . . . . . 6  |-  om  ~~  NN
4 isnumi 7789 . . . . . 6  |-  ( ( om  e.  On  /\  om 
~~  NN )  ->  NN  e.  dom  card )
51, 3, 4mp2an 654 . . . . 5  |-  NN  e.  dom  card
6 xpnum 7794 . . . . 5  |-  ( ( NN  e.  dom  card  /\  NN  e.  dom  card )  ->  ( NN  X.  NN )  e.  dom  card )
75, 5, 6mp2an 654 . . . 4  |-  ( NN 
X.  NN )  e. 
dom  card
8 subf 9263 . . . . . . 7  |-  -  :
( CC  X.  CC )
--> CC
9 ffun 5552 . . . . . . 7  |-  (  -  : ( CC  X.  CC ) --> CC  ->  Fun  -  )
108, 9ax-mp 8 . . . . . 6  |-  Fun  -
11 nnsscn 9961 . . . . . . . 8  |-  NN  C_  CC
12 xpss12 4940 . . . . . . . 8  |-  ( ( NN  C_  CC  /\  NN  C_  CC )  ->  ( NN  X.  NN )  C_  ( CC  X.  CC ) )
1311, 11, 12mp2an 654 . . . . . . 7  |-  ( NN 
X.  NN )  C_  ( CC  X.  CC )
148fdmi 5555 . . . . . . 7  |-  dom  -  =  ( CC  X.  CC )
1513, 14sseqtr4i 3341 . . . . . 6  |-  ( NN 
X.  NN )  C_  dom  -
16 fores 5621 . . . . . 6  |-  ( ( Fun  -  /\  ( NN  X.  NN )  C_  dom  -  )  ->  (  -  |`  ( NN  X.  NN ) ) : ( NN  X.  NN )
-onto-> (  -  " ( NN  X.  NN ) ) )
1710, 15, 16mp2an 654 . . . . 5  |-  (  -  |`  ( NN  X.  NN ) ) : ( NN  X.  NN )
-onto-> (  -  " ( NN  X.  NN ) )
18 dfz2 10255 . . . . . 6  |-  ZZ  =  (  -  " ( NN  X.  NN ) )
19 foeq3 5610 . . . . . 6  |-  ( ZZ  =  (  -  "
( NN  X.  NN ) )  ->  (
(  -  |`  ( NN  X.  NN ) ) : ( NN  X.  NN ) -onto-> ZZ  <->  (  -  |`  ( NN  X.  NN ) ) : ( NN  X.  NN ) -onto-> (  -  "
( NN  X.  NN ) ) ) )
2018, 19ax-mp 8 . . . . 5  |-  ( (  -  |`  ( NN  X.  NN ) ) : ( NN  X.  NN ) -onto-> ZZ  <->  (  -  |`  ( NN  X.  NN ) ) : ( NN  X.  NN ) -onto-> (  -  "
( NN  X.  NN ) ) )
2117, 20mpbir 201 . . . 4  |-  (  -  |`  ( NN  X.  NN ) ) : ( NN  X.  NN )
-onto-> ZZ
22 fodomnum 7894 . . . 4  |-  ( ( NN  X.  NN )  e.  dom  card  ->  ( (  -  |`  ( NN  X.  NN ) ) : ( NN  X.  NN ) -onto-> ZZ  ->  ZZ  ~<_  ( NN 
X.  NN ) ) )
237, 21, 22mp2 9 . . 3  |-  ZZ  ~<_  ( NN 
X.  NN )
24 xpnnen 12763 . . 3  |-  ( NN 
X.  NN )  ~~  NN
25 domentr 7125 . . 3  |-  ( ( ZZ  ~<_  ( NN  X.  NN )  /\  ( NN  X.  NN )  ~~  NN )  ->  ZZ  ~<_  NN )
2623, 24, 25mp2an 654 . 2  |-  ZZ  ~<_  NN
27 zex 10247 . . 3  |-  ZZ  e.  _V
28 nnssz 10257 . . 3  |-  NN  C_  ZZ
29 ssdomg 7112 . . 3  |-  ( ZZ  e.  _V  ->  ( NN  C_  ZZ  ->  NN  ~<_  ZZ ) )
3027, 28, 29mp2 9 . 2  |-  NN  ~<_  ZZ
31 sbth 7186 . 2  |-  ( ( ZZ  ~<_  NN  /\  NN  ~<_  ZZ )  ->  ZZ  ~~  NN )
3226, 30, 31mp2an 654 1  |-  ZZ  ~~  NN
Colors of variables: wff set class
Syntax hints:    <-> wb 177    = wceq 1649    e. wcel 1721   _Vcvv 2916    C_ wss 3280   class class class wbr 4172   Oncon0 4541   omcom 4804    X. cxp 4835   dom cdm 4837    |` cres 4839   "cima 4840   Fun wfun 5407   -->wf 5409   -onto->wfo 5411    ~~ cen 7065    ~<_ cdom 7066   cardccrd 7778   CCcc 8944    - cmin 9247   NNcn 9956   ZZcz 10238
This theorem is referenced by:  qnnen  12768  odinf  15154  odhash  15163  cygctb  15456  iscmet3  19199  dyadmbl  19445  mbfsup  19509  dya2iocct  24583
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-omul 6688  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-oi 7435  df-card 7782  df-acn 7785  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-n0 10178  df-z 10239  df-uz 10445
  Copyright terms: Public domain W3C validator