MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znunit Structured version   Unicode version

Theorem znunit 16844
Description: The units of ℤ/nℤ are the integers coprime to the base. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
znchr.y  |-  Y  =  (ℤ/n `  N )
znunit.u  |-  U  =  (Unit `  Y )
znunit.l  |-  L  =  ( ZRHom `  Y
)
Assertion
Ref Expression
znunit  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( L `  A )  e.  U  <->  ( A  gcd  N )  =  1 ) )

Proof of Theorem znunit
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 znchr.y . . . . 5  |-  Y  =  (ℤ/n `  N )
21zncrng 16825 . . . 4  |-  ( N  e.  NN0  ->  Y  e. 
CRing )
32adantr 452 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  Y  e.  CRing )
4 znunit.u . . . 4  |-  U  =  (Unit `  Y )
5 eqid 2436 . . . 4  |-  ( 1r
`  Y )  =  ( 1r `  Y
)
6 eqid 2436 . . . 4  |-  ( ||r `  Y
)  =  ( ||r `  Y
)
74, 5, 6crngunit 15767 . . 3  |-  ( Y  e.  CRing  ->  ( ( L `  A )  e.  U  <->  ( L `  A ) ( ||r `  Y
) ( 1r `  Y ) ) )
83, 7syl 16 . 2  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( L `  A )  e.  U  <->  ( L `  A ) ( ||r `
 Y ) ( 1r `  Y ) ) )
9 eqid 2436 . . . . . . 7  |-  ( Base `  Y )  =  (
Base `  Y )
10 znunit.l . . . . . . 7  |-  L  =  ( ZRHom `  Y
)
111, 9, 10znzrhfo 16828 . . . . . 6  |-  ( N  e.  NN0  ->  L : ZZ -onto-> ( Base `  Y
) )
1211adantr 452 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  L : ZZ -onto-> ( Base `  Y ) )
13 fof 5653 . . . . 5  |-  ( L : ZZ -onto-> ( Base `  Y )  ->  L : ZZ --> ( Base `  Y
) )
1412, 13syl 16 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  L : ZZ --> ( Base `  Y ) )
15 ffvelrn 5868 . . . 4  |-  ( ( L : ZZ --> ( Base `  Y )  /\  A  e.  ZZ )  ->  ( L `  A )  e.  ( Base `  Y
) )
1614, 15sylancom 649 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( L `  A
)  e.  ( Base `  Y ) )
17 eqid 2436 . . . 4  |-  ( .r
`  Y )  =  ( .r `  Y
)
189, 6, 17dvdsr2 15752 . . 3  |-  ( ( L `  A )  e.  ( Base `  Y
)  ->  ( ( L `  A )
( ||r `
 Y ) ( 1r `  Y )  <->  E. x  e.  ( Base `  Y ) ( x ( .r `  Y ) ( L `
 A ) )  =  ( 1r `  Y ) ) )
1916, 18syl 16 . 2  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( L `  A ) ( ||r `  Y
) ( 1r `  Y )  <->  E. x  e.  ( Base `  Y
) ( x ( .r `  Y ) ( L `  A
) )  =  ( 1r `  Y ) ) )
20 forn 5656 . . . . . 6  |-  ( L : ZZ -onto-> ( Base `  Y )  ->  ran  L  =  ( Base `  Y
) )
2112, 20syl 16 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ran  L  =  (
Base `  Y )
)
2221rexeqdv 2911 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. x  e. 
ran  L ( x ( .r `  Y
) ( L `  A ) )  =  ( 1r `  Y
)  <->  E. x  e.  (
Base `  Y )
( x ( .r
`  Y ) ( L `  A ) )  =  ( 1r
`  Y ) ) )
23 ffn 5591 . . . . 5  |-  ( L : ZZ --> ( Base `  Y )  ->  L  Fn  ZZ )
24 oveq1 6088 . . . . . . 7  |-  ( x  =  ( L `  n )  ->  (
x ( .r `  Y ) ( L `
 A ) )  =  ( ( L `
 n ) ( .r `  Y ) ( L `  A
) ) )
2524eqeq1d 2444 . . . . . 6  |-  ( x  =  ( L `  n )  ->  (
( x ( .r
`  Y ) ( L `  A ) )  =  ( 1r
`  Y )  <->  ( ( L `  n )
( .r `  Y
) ( L `  A ) )  =  ( 1r `  Y
) ) )
2625rexrn 5872 . . . . 5  |-  ( L  Fn  ZZ  ->  ( E. x  e.  ran  L ( x ( .r
`  Y ) ( L `  A ) )  =  ( 1r
`  Y )  <->  E. n  e.  ZZ  ( ( L `
 n ) ( .r `  Y ) ( L `  A
) )  =  ( 1r `  Y ) ) )
2714, 23, 263syl 19 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. x  e. 
ran  L ( x ( .r `  Y
) ( L `  A ) )  =  ( 1r `  Y
)  <->  E. n  e.  ZZ  ( ( L `  n ) ( .r
`  Y ) ( L `  A ) )  =  ( 1r
`  Y ) ) )
2822, 27bitr3d 247 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. x  e.  ( Base `  Y
) ( x ( .r `  Y ) ( L `  A
) )  =  ( 1r `  Y )  <->  E. n  e.  ZZ  ( ( L `  n ) ( .r
`  Y ) ( L `  A ) )  =  ( 1r
`  Y ) ) )
29 crngrng 15674 . . . . . . . . . 10  |-  ( Y  e.  CRing  ->  Y  e.  Ring )
303, 29syl 16 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  Y  e.  Ring )
31 eqid 2436 . . . . . . . . . 10  |-  (flds  ZZ )  =  (flds  ZZ )
3231, 10zrhrhm 16793 . . . . . . . . 9  |-  ( Y  e.  Ring  ->  L  e.  ( (flds  ZZ ) RingHom  Y ) )
3330, 32syl 16 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  L  e.  ( (flds  ZZ ) RingHom  Y ) )
3433adantr 452 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  L  e.  ( (flds  ZZ ) RingHom  Y ) )
35 simpr 448 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  n  e.  ZZ )
36 simplr 732 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  A  e.  ZZ )
37 zsubrg 16752 . . . . . . . . 9  |-  ZZ  e.  (SubRing ` fld )
3831subrgbas 15877 . . . . . . . . 9  |-  ( ZZ  e.  (SubRing ` fld )  ->  ZZ  =  ( Base `  (flds  ZZ ) ) )
3937, 38ax-mp 8 . . . . . . . 8  |-  ZZ  =  ( Base `  (flds  ZZ ) )
40 zex 10291 . . . . . . . . 9  |-  ZZ  e.  _V
41 cnfldmul 16709 . . . . . . . . . 10  |-  x.  =  ( .r ` fld )
4231, 41ressmulr 13582 . . . . . . . . 9  |-  ( ZZ  e.  _V  ->  x.  =  ( .r `  (flds  ZZ ) ) )
4340, 42ax-mp 8 . . . . . . . 8  |-  x.  =  ( .r `  (flds  ZZ ) )
4439, 43, 17rhmmul 15828 . . . . . . 7  |-  ( ( L  e.  ( (flds  ZZ ) RingHom  Y )  /\  n  e.  ZZ  /\  A  e.  ZZ )  ->  ( L `  ( n  x.  A ) )  =  ( ( L `  n ) ( .r
`  Y ) ( L `  A ) ) )
4534, 35, 36, 44syl3anc 1184 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( L `  ( n  x.  A
) )  =  ( ( L `  n
) ( .r `  Y ) ( L `
 A ) ) )
4630adantr 452 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  Y  e.  Ring )
4710, 5zrh1 16794 . . . . . . 7  |-  ( Y  e.  Ring  ->  ( L `
 1 )  =  ( 1r `  Y
) )
4846, 47syl 16 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( L ` 
1 )  =  ( 1r `  Y ) )
4945, 48eqeq12d 2450 . . . . 5  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( ( L `
 ( n  x.  A ) )  =  ( L `  1
)  <->  ( ( L `
 n ) ( .r `  Y ) ( L `  A
) )  =  ( 1r `  Y ) ) )
50 simpll 731 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  N  e.  NN0 )
5135, 36zmulcld 10381 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( n  x.  A )  e.  ZZ )
52 1z 10311 . . . . . . 7  |-  1  e.  ZZ
5352a1i 11 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  1  e.  ZZ )
541, 10zndvds 16830 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( n  x.  A
)  e.  ZZ  /\  1  e.  ZZ )  ->  ( ( L `  ( n  x.  A
) )  =  ( L `  1 )  <-> 
N  ||  ( (
n  x.  A )  -  1 ) ) )
5550, 51, 53, 54syl3anc 1184 . . . . 5  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( ( L `
 ( n  x.  A ) )  =  ( L `  1
)  <->  N  ||  ( ( n  x.  A )  -  1 ) ) )
5649, 55bitr3d 247 . . . 4  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( ( ( L `  n ) ( .r `  Y
) ( L `  A ) )  =  ( 1r `  Y
)  <->  N  ||  ( ( n  x.  A )  -  1 ) ) )
5756rexbidva 2722 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. n  e.  ZZ  ( ( L `
 n ) ( .r `  Y ) ( L `  A
) )  =  ( 1r `  Y )  <->  E. n  e.  ZZ  N  ||  ( ( n  x.  A )  - 
1 ) ) )
58 simplr 732 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  ->  A  e.  ZZ )
59 nn0z 10304 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  N  e.  ZZ )
6059ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  ->  N  e.  ZZ )
61 gcddvds 13015 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( A  gcd  N )  ||  A  /\  ( A  gcd  N ) 
||  N ) )
6258, 60, 61syl2anc 643 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( ( A  gcd  N )  ||  A  /\  ( A  gcd  N ) 
||  N ) )
6362simpld 446 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  ||  A )
6458, 60gcdcld 13018 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  e.  NN0 )
6564nn0zd 10373 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  e.  ZZ )
6635adantrr 698 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  ->  n  e.  ZZ )
67 dvdsmultr2 12885 . . . . . . . . 9  |-  ( ( ( A  gcd  N
)  e.  ZZ  /\  n  e.  ZZ  /\  A  e.  ZZ )  ->  (
( A  gcd  N
)  ||  A  ->  ( A  gcd  N ) 
||  ( n  x.  A ) ) )
6865, 66, 58, 67syl3anc 1184 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( ( A  gcd  N )  ||  A  -> 
( A  gcd  N
)  ||  ( n  x.  A ) ) )
6963, 68mpd 15 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  ||  ( n  x.  A ) )
7051adantrr 698 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( n  x.  A
)  e.  ZZ )
7152a1i 11 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
1  e.  ZZ )
7262simprd 450 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  ||  N )
73 simprr 734 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  ->  N  ||  ( ( n  x.  A )  - 
1 ) )
74 peano2zm 10320 . . . . . . . . . . 11  |-  ( ( n  x.  A )  e.  ZZ  ->  (
( n  x.  A
)  -  1 )  e.  ZZ )
7570, 74syl 16 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( ( n  x.  A )  -  1 )  e.  ZZ )
76 dvdstr 12883 . . . . . . . . . 10  |-  ( ( ( A  gcd  N
)  e.  ZZ  /\  N  e.  ZZ  /\  (
( n  x.  A
)  -  1 )  e.  ZZ )  -> 
( ( ( A  gcd  N )  ||  N  /\  N  ||  (
( n  x.  A
)  -  1 ) )  ->  ( A  gcd  N )  ||  (
( n  x.  A
)  -  1 ) ) )
7765, 60, 75, 76syl3anc 1184 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( ( ( A  gcd  N )  ||  N  /\  N  ||  (
( n  x.  A
)  -  1 ) )  ->  ( A  gcd  N )  ||  (
( n  x.  A
)  -  1 ) ) )
7872, 73, 77mp2and 661 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  ||  ( (
n  x.  A )  -  1 ) )
79 dvdssub2 12887 . . . . . . . 8  |-  ( ( ( ( A  gcd  N )  e.  ZZ  /\  ( n  x.  A
)  e.  ZZ  /\  1  e.  ZZ )  /\  ( A  gcd  N
)  ||  ( (
n  x.  A )  -  1 ) )  ->  ( ( A  gcd  N )  ||  ( n  x.  A
)  <->  ( A  gcd  N )  ||  1 ) )
8065, 70, 71, 78, 79syl31anc 1187 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( ( A  gcd  N )  ||  ( n  x.  A )  <->  ( A  gcd  N )  ||  1
) )
8169, 80mpbid 202 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  ||  1 )
82 dvds1 12898 . . . . . . 7  |-  ( ( A  gcd  N )  e.  NN0  ->  ( ( A  gcd  N ) 
||  1  <->  ( A  gcd  N )  =  1 ) )
8364, 82syl 16 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( ( A  gcd  N )  ||  1  <->  ( A  gcd  N )  =  1 ) )
8481, 83mpbid 202 . . . . 5  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  =  1 )
8584rexlimdvaa 2831 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. n  e.  ZZ  N  ||  (
( n  x.  A
)  -  1 )  ->  ( A  gcd  N )  =  1 ) )
86 simpr 448 . . . . . . 7  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  A  e.  ZZ )
8759adantr 452 . . . . . . 7  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  N  e.  ZZ )
88 bezout 13042 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  E. n  e.  ZZ  E. m  e.  ZZ  ( A  gcd  N )  =  ( ( A  x.  n )  +  ( N  x.  m ) ) )
8986, 87, 88syl2anc 643 . . . . . 6  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  E. n  e.  ZZ  E. m  e.  ZZ  ( A  gcd  N )  =  ( ( A  x.  n )  +  ( N  x.  m ) ) )
90 eqeq1 2442 . . . . . . 7  |-  ( ( A  gcd  N )  =  1  ->  (
( A  gcd  N
)  =  ( ( A  x.  n )  +  ( N  x.  m ) )  <->  1  =  ( ( A  x.  n )  +  ( N  x.  m ) ) ) )
91902rexbidv 2748 . . . . . 6  |-  ( ( A  gcd  N )  =  1  ->  ( E. n  e.  ZZ  E. m  e.  ZZ  ( A  gcd  N )  =  ( ( A  x.  n )  +  ( N  x.  m ) )  <->  E. n  e.  ZZ  E. m  e.  ZZ  1  =  ( ( A  x.  n )  +  ( N  x.  m
) ) ) )
9289, 91syl5ibcom 212 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( A  gcd  N )  =  1  ->  E. n  e.  ZZ  E. m  e.  ZZ  1  =  ( ( A  x.  n )  +  ( N  x.  m
) ) ) )
9359ad3antrrr 711 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  N  e.  ZZ )
94 dvdsmul1 12871 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  m  e.  ZZ )  ->  N  ||  ( N  x.  m ) )
9593, 94sylancom 649 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  N  ||  ( N  x.  m
) )
96 zmulcl 10324 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  m  e.  ZZ )  ->  ( N  x.  m
)  e.  ZZ )
9793, 96sylancom 649 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  ( N  x.  m )  e.  ZZ )
98 dvdsnegb 12867 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( N  x.  m
)  e.  ZZ )  ->  ( N  ||  ( N  x.  m
)  <->  N  ||  -u ( N  x.  m )
) )
9993, 97, 98syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  ( N  ||  ( N  x.  m )  <->  N  ||  -u ( N  x.  m )
) )
10095, 99mpbid 202 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  N  ||  -u ( N  x.  m
) )
10136adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  A  e.  ZZ )
102101zcnd 10376 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  A  e.  CC )
103 zcn 10287 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  n  e.  CC )
104103ad2antlr 708 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  n  e.  CC )
105102, 104mulcomd 9109 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  ( A  x.  n )  =  ( n  x.  A ) )
106105oveq1d 6096 . . . . . . . . . . . 12  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
( A  x.  n
)  +  ( N  x.  m ) )  =  ( ( n  x.  A )  +  ( N  x.  m
) ) )
107104, 102mulcld 9108 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
n  x.  A )  e.  CC )
10897zcnd 10376 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  ( N  x.  m )  e.  CC )
109107, 108subnegd 9418 . . . . . . . . . . . 12  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
( n  x.  A
)  -  -u ( N  x.  m )
)  =  ( ( n  x.  A )  +  ( N  x.  m ) ) )
110106, 109eqtr4d 2471 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
( A  x.  n
)  +  ( N  x.  m ) )  =  ( ( n  x.  A )  -  -u ( N  x.  m
) ) )
111110oveq2d 6097 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
( n  x.  A
)  -  ( ( A  x.  n )  +  ( N  x.  m ) ) )  =  ( ( n  x.  A )  -  ( ( n  x.  A )  -  -u ( N  x.  m )
) ) )
112108negcld 9398 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  -u ( N  x.  m )  e.  CC )
113107, 112nncand 9416 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
( n  x.  A
)  -  ( ( n  x.  A )  -  -u ( N  x.  m ) ) )  =  -u ( N  x.  m ) )
114111, 113eqtrd 2468 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
( n  x.  A
)  -  ( ( A  x.  n )  +  ( N  x.  m ) ) )  =  -u ( N  x.  m ) )
115100, 114breqtrrd 4238 . . . . . . . 8  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  N  ||  ( ( n  x.  A )  -  (
( A  x.  n
)  +  ( N  x.  m ) ) ) )
116 oveq2 6089 . . . . . . . . 9  |-  ( 1  =  ( ( A  x.  n )  +  ( N  x.  m
) )  ->  (
( n  x.  A
)  -  1 )  =  ( ( n  x.  A )  -  ( ( A  x.  n )  +  ( N  x.  m ) ) ) )
117116breq2d 4224 . . . . . . . 8  |-  ( 1  =  ( ( A  x.  n )  +  ( N  x.  m
) )  ->  ( N  ||  ( ( n  x.  A )  - 
1 )  <->  N  ||  (
( n  x.  A
)  -  ( ( A  x.  n )  +  ( N  x.  m ) ) ) ) )
118115, 117syl5ibrcom 214 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
1  =  ( ( A  x.  n )  +  ( N  x.  m ) )  ->  N  ||  ( ( n  x.  A )  - 
1 ) ) )
119118rexlimdva 2830 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( E. m  e.  ZZ  1  =  ( ( A  x.  n
)  +  ( N  x.  m ) )  ->  N  ||  (
( n  x.  A
)  -  1 ) ) )
120119reximdva 2818 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. n  e.  ZZ  E. m  e.  ZZ  1  =  ( ( A  x.  n
)  +  ( N  x.  m ) )  ->  E. n  e.  ZZ  N  ||  ( ( n  x.  A )  - 
1 ) ) )
12192, 120syld 42 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( A  gcd  N )  =  1  ->  E. n  e.  ZZ  N  ||  ( ( n  x.  A )  - 
1 ) ) )
12285, 121impbid 184 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. n  e.  ZZ  N  ||  (
( n  x.  A
)  -  1 )  <-> 
( A  gcd  N
)  =  1 ) )
12328, 57, 1223bitrd 271 . 2  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. x  e.  ( Base `  Y
) ( x ( .r `  Y ) ( L `  A
) )  =  ( 1r `  Y )  <-> 
( A  gcd  N
)  =  1 ) )
1248, 19, 1233bitrd 271 1  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( L `  A )  e.  U  <->  ( A  gcd  N )  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   E.wrex 2706   _Vcvv 2956   class class class wbr 4212   ran crn 4879    Fn wfn 5449   -->wf 5450   -onto->wfo 5452   ` cfv 5454  (class class class)co 6081   CCcc 8988   1c1 8991    + caddc 8993    x. cmul 8995    - cmin 9291   -ucneg 9292   NN0cn0 10221   ZZcz 10282    || cdivides 12852    gcd cgcd 13006   Basecbs 13469   ↾s cress 13470   .rcmulr 13530   Ringcrg 15660   CRingccrg 15661   1rcur 15662   ||rcdsr 15743  Unitcui 15744   RingHom crh 15817  SubRingcsubrg 15864  ℂfldccnfld 16703   ZRHomczrh 16778  ℤ/nczn 16781
This theorem is referenced by:  znunithash  16845  znrrg  16846  dchrelbas4  21027  lgsdchr  21132  rpvmasumlem  21181  dirith  21223
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-tpos 6479  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-ec 6907  df-qs 6911  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-rp 10613  df-fz 11044  df-fl 11202  df-mod 11251  df-seq 11324  df-exp 11383  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-dvds 12853  df-gcd 13007  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-0g 13727  df-imas 13734  df-divs 13735  df-mnd 14690  df-mhm 14738  df-grp 14812  df-minusg 14813  df-sbg 14814  df-mulg 14815  df-subg 14941  df-nsg 14942  df-eqg 14943  df-ghm 15004  df-cmn 15414  df-abl 15415  df-mgp 15649  df-rng 15663  df-cring 15664  df-ur 15665  df-oppr 15728  df-dvdsr 15746  df-unit 15747  df-rnghom 15819  df-subrg 15866  df-lmod 15952  df-lss 16009  df-lsp 16048  df-sra 16244  df-rgmod 16245  df-lidl 16246  df-rsp 16247  df-2idl 16303  df-cnfld 16704  df-zrh 16782  df-zn 16785
  Copyright terms: Public domain W3C validator