HomeHome Metamath Proof Explorer < Previous   Next >
Related theorems
Unicode version

Theorem zorn 6625
Description: Zorn's Lemma. If the union of every chain (with respect to inclusion) in a set belongs to the set, then the set contains a maximal element. This theorem is equivalent to the Axiom of Choice. Theorem 6M of [Enderton] p. 151. See zorn2 6624 for a version with general partial orderings.
Hypothesis
Ref Expression
zorn2.1 |- A e. _V
Assertion
Ref Expression
zorn |- (A.z((z C_ A /\ A.x e. z A.y e. z (x C_ y \/ y C_ x)) -> U.z e. A) -> E.x e. A A.y e. A -. x C. y)
Distinct variable group:   x,y,z,A

Proof of Theorem zorn
StepHypRef Expression
1 pssirr 2910 . . . . . . . 8 |- -. u C. u
2 zornlem 6623 . . . . . . . 8 |- (u{<.w, v>. | w C. v}u <-> u C. u)
31, 2mtbir 346 . . . . . . 7 |- -. u{<.w, v>. | w C. v}u
4 zornlem 6623 . . . . . . . 8 |- (u{<.w, v>. | w C. v}y <-> u C. y)
5 zornlem 6623 . . . . . . . 8 |- (y{<.w, v>. | w C. v}x <-> y C. x)
6 psstr 2914 . . . . . . . . 9 |- ((u C. y /\ y C. x) -> u C. x)
7 zornlem 6623 . . . . . . . . 9 |- (u{<.w, v>. | w C. v}x <-> u C. x)
86, 7sylibr 241 . . . . . . . 8 |- ((u C. y /\ y C. x) -> u{<.w, v>. | w C. v}x)
94, 5, 8syl2anb 531 . . . . . . 7 |- ((u{<.w, v>. | w C. v}y /\ y{<.w, v>. | w C. v}x) -> u{<.w, v>. | w C. v}x)
103, 9pm3.2i 505 . . . . . 6 |- (-. u{<.w, v>. | w C. v}u /\ ((u{<.w, v>. | w C. v}y /\ y{<.w, v>. | w C. v}x) -> u{<.w, v>. | w C. v}x))
1110a1i 9 . . . . 5 |- ((u e. A /\ y e. A /\ x e. A) -> (-. u{<.w, v>. | w C. v}u /\ ((u{<.w, v>. | w C. v}y /\ y{<.w, v>. | w C. v}x) -> u{<.w, v>. | w C. v}x)))
1211rgen3 2393 . . . 4 |- A.u e. A A.y e. A A.x e. A (-. u{<.w, v>. | w C. v}u /\ ((u{<.w, v>. | w C. v}y /\ y{<.w, v>. | w C. v}x) -> u{<.w, v>. | w C. v}x))
13 df-po 3770 . . . 4 |- ({<.w, v>. | w C. v} Po A <-> A.u e. A A.y e. A A.x e. A (-. u{<.w, v>. | w C. v}u /\ ((u{<.w, v>. | w C. v}y /\ y{<.w, v>. | w C. v}x) -> u{<.w, v>. | w C. v}x)))
1412, 13mpbir 238 . . 3 |- {<.w, v>. | w C. v} Po A
15 df-so 3782 . . . . . . . 8 |- ({<.w, v>. | w C. v} Or z <-> ({<.w, v>. | w C. v} Po z /\ A.x e. z A.y e. z (x{<.w, v>. | w C. v}y \/ x = y \/ y{<.w, v>. | w C. v}x)))
1615simprbi 515 . . . . . . 7 |- ({<.w, v>. | w C. v} Or z -> A.x e. z A.y e. z (x{<.w, v>. | w C. v}y \/ x = y \/ y{<.w, v>. | w C. v}x))
17 zornlem 6623 . . . . . . . . . 10 |- (x{<.w, v>. | w C. v}y <-> x C. y)
18 biid 273 . . . . . . . . . 10 |- (x = y <-> x = y)
1917, 18, 53orbi123i 1236 . . . . . . . . 9 |- ((x{<.w, v>. | w C. v}y \/ x = y \/ y{<.w, v>. | w C. v}x) <-> (x C. y \/ x = y \/ y C. x))
20 sspsstri 2912 . . . . . . . . 9 |- ((x C_ y \/ y C_ x) <-> (x C. y \/ x = y \/ y C. x))
2119, 20bitr4i 289 . . . . . . . 8 |- ((x{<.w, v>. | w C. v}y \/ x = y \/ y{<.w, v>. | w C. v}x) <-> (x C_ y \/ y C_ x))
22212ralbii 2334 . . . . . . 7 |- (A.x e. z A.y e. z (x{<.w, v>. | w C. v}y \/ x = y \/ y{<.w, v>. | w C. v}x) <-> A.x e. z A.y e. z (x C_ y \/ y C_ x))
2316, 22sylib 221 . . . . . 6 |- ({<.w, v>. | w C. v} Or z -> A.x e. z A.y e. z (x C_ y \/ y C_ x))
2423anim2i 639 . . . . 5 |- ((z C_ A /\ {<.w, v>. | w C. v} Or z) -> (z C_ A /\ A.x e. z A.y e. z (x C_ y \/ y C_ x)))
25 risset 2350 . . . . . 6 |- (U.z e. A <-> E.x e. A x = U.z)
26 eqimss2 2873 . . . . . . . . 9 |- (x = U.z -> U.z C_ x)
27 unissb 3392 . . . . . . . . 9 |- (U.z C_ x <-> A.u e. z u C_ x)
2826, 27sylib 221 . . . . . . . 8 |- (x = U.z -> A.u e. z u C_ x)
297orbi1i 589 . . . . . . . . . 10 |- ((u{<.w, v>. | w C. v}x \/ u = x) <-> (u C. x \/ u = x))
30 sspss 2909 . . . . . . . . . 10 |- (u C_ x <-> (u C. x \/ u = x))
3129, 30bitr4i 289 . . . . . . . . 9 |- ((u{<.w, v>. | w C. v}x \/ u = x) <-> u C_ x)
3231ralbii 2332 . . . . . . . 8 |- (A.u e. z (u{<.w, v>. | w C. v}x \/ u = x) <-> A.u e. z u C_ x)
3328, 32sylibr 241 . . . . . . 7 |- (x = U.z -> A.u e. z (u{<.w, v>. | w C. v}x \/ u = x))
3433reximi 2403 . . . . . 6 |- (E.x e. A x = U.z -> E.x e. A A.u e. z (u{<.w, v>. | w C. v}x \/ u = x))
3525, 34sylbi 220 . . . . 5 |- (U.z e. A -> E.x e. A A.u e. z (u{<.w, v>. | w C. v}x \/ u = x))
3624, 35imim12i 55 . . . 4 |- (((z C_ A /\ A.x e. z A.y e. z (x C_ y \/ y C_ x)) -> U.z e. A) -> ((z C_ A /\ {<.w, v>. | w C. v} Or z) -> E.x e. A A.u e. z (u{<.w, v>. | w C. v}x \/ u = x)))
3736alimi 1527 . . 3 |- (A.z((z C_ A /\ A.x e. z A.y e. z (x C_ y \/ y C_ x)) -> U.z e. A) -> A.z((z C_ A /\ {<.w, v>. | w C. v} Or z) -> E.x e. A A.u e. z (u{<.w, v>. | w C. v}x \/ u = x)))
38 zorn2.1 . . . 4 |- A e. _V
3938zorn2 6624 . . 3 |- (({<.w, v>. | w C. v} Po A /\ A.z((z C_ A /\ {<.w, v>. | w C. v} Or z) -> E.x e. A A.u e. z (u{<.w, v>. | w C. v}x \/ u = x))) -> E.x e. A A.y e. A -. x{<.w, v>. | w C. v}y)
4014, 37, 39sylancr 739 . 2 |- (A.z((z C_ A /\ A.x e. z A.y e. z (x C_ y \/ y C_ x)) -> U.z e. A) -> E.x e. A A.y e. A -. x{<.w, v>. | w C. v}y)
4117notbii 342 . . . 4 |- (-. x{<.w, v>. | w C. v}y <-> -. x C. y)
4241ralbii 2332 . . 3 |- (A.y e. A -. x{<.w, v>. | w C. v}y <-> A.y e. A -. x C. y)
4342rexbii 2333 . 2 |- (E.x e. A A.y e. A -. x{<.w, v>. | w C. v}y <-> E.x e. A A.y e. A -. x C. y)
4440, 43sylib 221 1 |- (A.z((z C_ A /\ A.x e. z A.y e. z (x C_ y \/ y C_ x)) -> U.z e. A) -> E.x e. A A.y e. A -. x C. y)
Colors of variables: wff set class
Syntax hints:  -. wn 2   -> wi 3   \/ wo 417   /\ wa 418   \/ w3o 1036   /\ w3a 1037  A.wal 1515   = wceq 1592   e. wcel 1594  A.wral 2310  E.wrex 2311  _Vcvv 2499   C_ wss 2801   C. wpss 2802  U.cuni 3364   class class class wbr 3509  {copab 3567   Po wpo 3768   Or wor 3769
This theorem is referenced by:  zornn0 6626  alexsublem2 16113
This theorem was proved from axioms:  ax-1 4  ax-2 5  ax-3 6  ax-mp 7  ax-5 1516  ax-6 1517  ax-7 1518  ax-gen 1519  ax-8 1596  ax-10 1597  ax-11 1598  ax-12 1599  ax-13 1600  ax-14 1601  ax-17 1608  ax-9 1620  ax-4 1626  ax-16 1803  ax-ext 2074  ax-rep 3599  ax-sep 3609  ax-nul 3619  ax-pow 3655  ax-pr 3679  ax-un 3947  ax-ac 6568
This theorem depends on definitions:  df-bi 210  df-or 419  df-an 420  df-3or 1038  df-3an 1039  df-ex 1521  df-sb 1765  df-eu 1992  df-mo 1993  df-clab 2080  df-cleq 2085  df-clel 2088  df-ne 2220  df-ral 2314  df-rex 2315  df-reu 2316  df-rab 2317  df-v 2501  df-sbc 2671  df-csb 2745  df-dif 2804  df-un 2806  df-in 2808  df-ss 2810  df-pss 2812  df-nul 3066  df-pw 3222  df-sn 3237  df-pr 3238  df-tp 3240  df-op 3241  df-uni 3365  df-int 3399  df-iun 3437  df-br 3510  df-opab 3568  df-tr 3583  df-eprel 3762  df-id 3765  df-po 3770  df-so 3782  df-fr 3800  df-we 3816  df-ord 3832  df-on 3833  df-suc 3835  df-xp 4151  df-rel 4152  df-cnv 4153  df-co 4154  df-dm 4155  df-rn 4156  df-res 4157  df-ima 4158  df-fun 4159  df-fn 4160  df-f 4161  df-f1 4162  df-fo 4163  df-f1o 4164  df-fv 4165  df-iso 4166  df-en 5752
Copyright terms: Public domain