Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn Structured version   Unicode version

Theorem zorn 8387
 Description: Zorn's Lemma. If the union of every chain (with respect to inclusion) in a set belongs to the set, then the set contains a maximal element. This theorem is equivalent to the Axiom of Choice. Theorem 6M of [Enderton] p. 151. See zorn2 8386 for a version with general partial orderings. (Contributed by NM, 12-Aug-2004.)
Hypothesis
Ref Expression
zornn0.1
Assertion
Ref Expression
zorn []
Distinct variable group:   ,,,

Proof of Theorem zorn
StepHypRef Expression
1 zornn0.1 . . 3
2 numth3 8350 . . 3
31, 2ax-mp 8 . 2
4 zorng 8384 . 2 []
53, 4mpan 652 1 []
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 359  wal 1549   wcel 1725  wral 2705  wrex 2706  cvv 2956   wss 3320   wpss 3321  cuni 4015   wor 4502   cdm 4878   [] crpss 6521  ccrd 7822 This theorem is referenced by:  alexsubALTlem2  18079 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-ac2 8343 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-suc 4587  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-rpss 6522  df-riota 6549  df-recs 6633  df-en 7110  df-card 7826  df-ac 7997
 Copyright terms: Public domain W3C validator